Comportamento tribológico de sistemas espumas
ortopédicas/pele artificial: efeito da morfologia,
propriedades mecânicas e energia livre superficial

Diogo Aguilar Silva

Dissertação para obtenção do Grau de Mestre em

Bioengenharia e Nanossistemas

Orientadora: Professora Doutora Ana Paula Valagão Amadeu do Serro
Orientador Externo: Professor Doutor Célio Gabriel Figueiredo Pina

Júri
Presidente: Professor Doutor Luís Joaquim Pina da Fonseca
Orientador: Professor Doutor Célio Gabriel Figueiredo Pina
Vogal: Professor Doutor Rogério Anacleto Cordeiro Colaço

Dezembro de 2015

ii

Agradecimentos
O desenvolvimento desta dissertação só foi possível pela contribuição e apoio de
várias pessoas, às quais não poderia deixar de exprimir o meu mais sincero obrigado.
Em primeiro lugar, aos meus orientadores Ana Paula Serro e Célio Pina pela ajuda,
incentivo e disponibilidade constante ao longo deste ano.
Ao Professor Doutor Rogério Colaço pela disponibilização dos vários equipamentos
necessários para a realização deste trabalho.
À Engenheira Isabel Nogueira, à Professora Doutora Fátima Vaz e à Professora
Doutora Filomena Teodoro pelo auxílio prestado no decorrer do trabalho.
Aos meus colegas de laboratório Diana Silva, Andreia Pimenta, Bruno Nunes, Vanessa
Moreira, Ana Topete, Andreia Gonçalves e Filipe Rodrigues pela integração e toda a ajuda
oferecida no decurso deste trabalho.
A todos os meus amigos que me incentivaram nos momentos mais complicados.
E por fim, a toda a minha família mas em especial aos meus pais e irmã, por serem os
principais responsáveis por ter conseguido chegar aqui, graças ao seu apoio constante que me
ajudou a ultrapassar os obstáculos que surgiam no dia-a-dia.

iii

iv

Resumo
O desconforto associado ao uso de ortóteses resulta principalmente do atrito entre o
material de revestimento, neste caso as espumas, e a pele humana. Embora, hoje em dia, a
utilização deste tipo de dispositivos seja comum, existe escassa informação relativamente à
influência das propriedades das espumas no comportamento tribológico das ortóteses.
Neste trabalho estudou-se o efeito da morfologia, das propriedades mecânicas e da
energia livre superficial nos valores dos coeficientes de atrito de sistemas espumas
ortopédicas/pele artificial.
Caracterizou-se a pele artificial, recorrendo a diferentes técnicas como a microscopia
de força atómica (AFM) para analisar a topografia e o método de gota séssil para averiguar a
sua molhabilidade.
Seleccionaram-se diferentes

espumas

ortopédicas

existentes

no mercado,

e

investigou-se a morfologia das suas células através da microscopia electrónica de varrimento
(SEM), determinou-se a energia livre superficial a partir de medidas de molhabilidade e
obtiveram-se

as

propriedades

mecânicas

com

base

nos

ensaios

de

compressão-

descompressão.
Realizaram-se os ensaios nanotribológicos, entre a pele artificial e as espumas, com a
aplicação de diversas cargas.
Os resultados demonstraram que os coeficientes de atrito diminuem com o aumento da
carga aplicada e que mantendo todas as outras propriedades estudadas aproximadamente
constantes, o aumento do tamanho de célula origina uma diminuição dos coeficientes de atrito.
Por seu turno, o aumento da energia livre superficial das espumas conduz a um
aumento do coeficiente de atrito.
Quanto ao módulo de Young, verificou-se que a sua diminuição leva a um aumento dos
coeficientes de atrito. O Módulo de Young é afectado pelo tipo de estrutura celular, o tamanho
de célula e a espessura das paredes. Como tal, não é possível fixar estes parâmetros
independentemente.

Palavras-chave: atrito, pele artificial, espumas ortopédicas, morfologia, propriedades
mecânicas e energia livre superficial

v

vi

Abstract
The discomfort associated to the use of orthosis results mainly from friction between the
coating material, in this case the foams, and human skin. Although, nowadays the use of such
devices is common, there is few information concerning the influence of the properties of the
foams in the tribological behavior of the orthosis.
In this study it was investigated the effect of the morphology, mechanical properties and
surface free energy in the values of friction coefficients of orthopedic foams/artificial skin
systems.
The artificial skin was characterized using different techniques such as, atomic force
microscopy (AFM) for analyzing the topography and the sessile drop method to determine its
wettability.
Different orthopedic foams, of those existing in the market, were selected, and
characterized concerning the morphology of their cells by scanning electron microscopy (SEM),
surface free energy from wetting measures and mechanical properties through compressiondecompression tests.
Nanotribological tests were performed between the artificial skin and the foam, with the
application of various loads.
The results show that the coefficient of friction decreases with increasing of the applied
load. Maintaining all other properties studied approximately constant, the increase in cell size
results in a reduction in friction coefficients.
On the other hand, the increase in surface free energy of the foams leads to an
increase in friction coefficient.
Relatively to Young's modulus, was verified that its decrease leads to an increase in
friction coefficients. The Young's Modulus is affected by the type of cell structure, cell size and
wall thickness. Thus, it is not possible to fix these parameters independently.

Key-words: friction, artificial skin, orthopedic foams, morphology, mechanical properties and
surface free energy.

vii

Índice

Indice de Figuras ........................................................................................................................xi
Indice de Tabelas ..................................................................................................................... xiv
Lista de abreviaturas e símbolos ............................................................................................ xv
Introdução .................................................................................................................................... 1
1. Fundamentos teóricos ........................................................................................................... 2
1.1 Ortóteses ........................................................................................................................... 2
1.2 Pele humana..................................................................................................................... 3
1.2.1 Anatomia e fisiologia ................................................................................................ 3
1.2.2 Propriedades mecânicas ......................................................................................... 4
1.3 Espumas ........................................................................................................................... 5
1.3.1 Tipos ........................................................................................................................... 6
1.3.2 Estrutura e tamanho de célula................................................................................ 7
1.3.3 Densidade relativa .................................................................................................. 10
1.3.4 Comportamento mecânico .................................................................................... 10
2. Tribologia ............................................................................................................................... 11
3. Parte experimental ............................................................................................................... 15
3.1 Materiais .......................................................................................................................... 15
3.1.1 Pele artificial ............................................................................................................ 15
3.1.2 Espumas .................................................................................................................. 15
3.1.3 Reagentes ............................................................................................................... 17
3.2 Métodos experimentais ................................................................................................. 17
3.2.1 Preparação da pele artificial ................................................................................. 17
3.2.2 Caracterização da pele artificial ........................................................................... 18
3.2.3 Preparação das amostras de espumas .............................................................. 19
3.2.4 Caracterização das espumas ............................................................................... 19
4.Resultados ............................................................................................................................. 25
4.1 Caracterização da pele artificial .................................................................................. 25
4.1.1 Microscopia de força atómica (AFM) ................................................................... 25
4.1.2 Molhabilidade .......................................................................................................... 25
4.2 Caracterização das espumas ...................................................................................... 26
4.2.1 Estrutura das espumas .......................................................................................... 26
viii

4.2.2 Densidades .............................................................................................................. 34
4.2.3 Propriedades mecânicas ....................................................................................... 35
4.2.4. Molhabilidade ......................................................................................................... 36
4.2.5 Coeficientes de atrito ............................................................................................. 39
5. Discussão de resultados ..................................................................................................... 42
5.1 Comparação entre a pele artificial e a pele humana ................................................ 42
5.2 Efeito da densidade das espumas no módulo de Young ........................................ 43
5.3 Efeito do tamanho de célula na molhabilidade ......................................................... 45
5.4 Efeito da adesão nos ensaios nanotribológicos........................................................ 46
5.5 Efeito da carga normal aplicada no coeficiente atrito .............................................. 47
5.6 Efeito do tamanho de célula no coeficiente de atrito ............................................... 47
5.7 Efeito da energia livre de superfície no coeficiente de atrito .................................. 48
5.8 Efeito do módulo de Young no coeficiente de atrito ................................................. 50
Conclusões ................................................................................................................................ 51
Referências Bibliográficas ....................................................................................................... 52

ix

x

Índice de Figuras
Figura 1. Exemplos de ortóteses, adaptado de [81]. ........................................................... 2
Figura 2. Constituição da pele humana, adaptado de [75]. ................................................. 3
Figura 3. Gráfico representativo dos módulos de elasticidade para as diferentes
camadas da pele humana, adaptado de [9]. .......................................................................... 5
Figura 4. Tipos de células existentes em espumas: aberta à esquerda e fechada à
direita, adaptado de [7]. ............................................................................................................. 7
Figura 5. Gráfico ilustrativo das forças aplicadas para um certo valor de compressão,
tendo em conta a quantidade de células abertas, adaptado de [7].................................... 8
Figura 6. Modelo comparativo do comportamento de uma espuma sujeita a
compressão: ar retido nas células e paredes celulares. Adaptado de [7]. ........................ 9
Figura 7. Gráfico representativo da resposta de uma espuma de poliuretano após um
teste de compressão-descompressão. A primeira curva representa a compressão da
espuma e a segunda curva a descompressão da espuma. Adaptado de [20]............... 10
Figura 8. Situação de contacto entre a pele e um material num sistema tribológico,
adaptado de [28]....................................................................................................................... 12
Figura 9. Acção da força de atrito e da força normal no contacto entre duas
superfícies. Adaptado de [80]. ................................................................................................ 12
Figura 10. Pele artificial VITRO-SKIN [77]. .......................................................................... 15
Figura 11. Sistema de hidratação da pele artificial ............................................................. 17
Figura 12. Representação global de todo o sistema envolvido na técnica de
microscopia de força atómica (AFM). Adaptado de [79]. ................................................... 18
Figura 13. Representação dos tipos de electrões e radiação envolvidos no SEM,
adaptado de [76]....................................................................................................................... 20
Figura 14. Protótipo usado nos ensaios de compressão-descompressão. .................... 22
Figura 15. Representação do método da gota séssil, adaptado de [78]. ........................ 23
Figura 16. Representação das tensões interfaciais presentes na formação da gota, a
qual foi obtida pelo método da gota séssil. .......................................................................... 23
Figura 17. Representação dos valores dos ângulos de contacto numa superfície
hidrofílica (à esquerda) e hidrofóbica (à direita). Adaptado de [74]. ................................ 23
Figura 18. Representação global de todo o sistema envolvido nos ensaios
nanotribológicos, adaptado de [49]. ...................................................................................... 24
Figura 19. Imagem AFM em 3D e 2D da pele artificial e o perfil correspondente à linha
presente na imagem 2D. ......................................................................................................... 25
xi

Figura 20. SEM da espuma Eva com diferentes ampliações ............................................ 26
Figura 21. SEM da espuma Eva Geriátrico com diferentes ampliações ......................... 26
Figura 22. SEM da espuma Nora Lunairflex com diferentes ampliações ....................... 27
Figura 23. SEM da espuma Multiform azul com diferentes ampliações .......................... 27
Figura 24. SEM da espuma Multiform branco com diferentes ampliações ..................... 27
Figura 25. SEM da espuma Multiform castanho com diferentes ampliações ................. 28
Figura 26. SEM da espuma Multiform laranja com diferentes ampliações ..................... 28
Figura 27. SEM da espuma Multiform vermelho com diferentes ampliações ................. 28
Figura 28. SEM da espuma Pelite claro com diferentes ampliações ............................... 29
Figura 29. SEM da espuma Pelite escuro com diferentes ampliações ........................... 29
Figura 30. SEM da espuma Plastazote branco com diferentes ampliações ................... 29
Figura 31. SEM da espuma Plastazote claro normal com diferentes ampliações ......... 30
Figura 32. SEM da espuma Plastazote claro perfurado com diferentes ampliações .... 30
Figura 33. SEM da espuma Poliuretano claro com diferentes ampliações ..................... 30
Figura 34. SEM da espuma Poliuretano escuro com diferentes ampliações ................. 31
Figura 35. SEM da espuma Sensofte maior espessura com diferentes ampliações .... 31
Figura 36. SEM da espuma Sensofte menor espessura com diferentes ampliações ... 31
Figura 37. Evolução do coeficiente de atrito com a carga normal aplicada para a
família de espumas Eva (à esquerda) e resultados da regressão potencial µ =
(à direita). ................................................................................................................................... 40
Figura 38. Evolução do coeficiente de atrito com a carga normal aplicada para a
família de espumas Multiform (à esquerda) e resultados da regressão µ = (à
direita). ....................................................................................................................................... 40
Figura 39. Evolução do coeficiente de atrito com a carga normal aplicada para a
família de espumas Pelite (à esquerda) e resultados da regressão potencial µ =
(à direita). .......................................................................................................................... 41
Figura 40. Evolução do coeficiente de atrito com a carga normal aplicada para a
família de espumas Plastazote (à esquerda) e resultados da regressão potencial
µ = (à direita). ............................................................................................................. 41
Figura 41. Evolução do coeficiente de atrito com a carga normal aplicada para a
família de espumas Poliuretano (à esquerda) e resultados da regressão potencial
µ = (à direita). ............................................................................................................. 41
Figura 42. Evolução do coeficiente de atrito com a carga normal aplicada para a
família de espumas Sensofte (à esquerda) e resultados da regressão potencial
µ = (à direita). ............................................................................................................. 42
xii

Figura 43. Gráfico representativo do módulo de Young relativo em função da
densidade relativa .................................................................................................................... 44
Figura 44. Gráfico representativo dos ângulos de contacto com água em função da
área de contacto em 1cm2 ...................................................................................................... 46
Figura 45. Gráfico representativo dos coeficientes de atrito dependentes da carga
aplicada (k) em função da polaridade ................................................................................... 49
Figura 46. Gráfico representativo do Módulo de Young em função do coeficiente de
atrito dependente da carga aplicada (k), para grupos de espumas com energias livres
de superfície médias próximas a) 21,5 mJ/m2 e b) 27,6 mJ/m2........................................ 50

xiii

Índice de Tabelas

Tabela 1. Espumas utilizadas no trabalho e respectiva espessura e material ............... 15
Tabela 2. Ângulos de contacto da água e diodometano com a pele artificial, energia
livre superficial da pele (componente dispersiva, componente polar e valor total) e
respectiva polaridade. .............................................................................................................. 25
Tabela 3. Valores do raio das células e da espessura das paredes das células,
relativos às espumas Evas ..................................................................................................... 32
Tabela 4. Valores do raio das células e da espessura das paredes das células,
relativos às espumas Multiforms ............................................................................................ 32
Tabela 5. Valores do raio das células e da espessura das paredes das células,
relativos às espumas Pelites .................................................................................................. 32
Tabela 6. Valores do raio das células e da espessura das paredes das células,
relativos às espumas Plastazotes.......................................................................................... 33
Tabela 7. Valores do raio das células e da espessura das paredes das células,
relativos às espumas Poliuretanos ........................................................................................ 33
Tabela 8. Valores do raio das células e da espessura das paredes das células,
relativos às espumas Sensoftes ............................................................................................ 33
Tabela 9. Áreas de contacto obtidas em 1 cm2 de cada espuma..................................... 34
Tabela 10. Densidades das espumas estudadas ............................................................... 34
Tabela 11. Valores relativos ao módulo de elasticidade e à tensão de cedência das
espumas..................................................................................................................................... 35
Tabela 12. Ângulos de contacto da água e do diodometano sobre as espumas, energia
livre superficial das espumas (componente dispersiva, componente polar, valor total) e
respectiva polaridade. .............................................................................................................. 36
Tabela 13. Variação percentual do volume das gotas de água nos ensaios de
molhabilidade ............................................................................................................................ 39
Tabela 14. Tabela comparativa dos parâmetros relativos aos Plastazotes .................... 44
Tabela 15. Tabela comparativa dos parâmetros relativos às espumas de polietileno .. 45
Tabela 16. Tabela comparativa dos parâmetros relativos aos Plastazotes .................... 48
Tabela 17. Tabela comparativa dos parâmetros relativos ao Eva e ao Eva Geriátrico 49

xiv

Lista de abreviaturas e símbolos

AFM

Microscopia de força atómica

BSE

Electrões retrodifundidos

COF

Coeficiente de atrito obtido

E

Módulo de Young da espuma

Es

Módulo de Young do material sólido

EVA

Etil vinil acetato

Fa

Força de atrito

Fn

Força normal

k

Coeficiente de atrito dependente da carga aplicada

p0

Pressão dos gases no interior das células

PE

Polietileno

PEBD Polietileno de baixa densidade
PU

Poliuretano

Ra

Rugosidade média da área total

SC

Camada córnea

SE

Electrões secundários

SEM

Microscopia electrónica de varrimento

SPM

Microscopia de varrimento por sonda

d

e

p

Componentes dispersiva e polar da energia livre superficial



Densidade da espuma

s

Densidade do material sólido

/s

Densidade relativa

E/Es

Módulo de Young relativo



Fracção de material sólido contido nas arestas das células

xv



Tensão



Deformação

µ

Coeficiente de atrito

SV

Energia livre superficial

LV

Tensão superficial do líquido

xvi

Introdução
Hoje em dia existe um vasto conjunto de dispositivos específicos que permitem a
recuperação da função ausente ou diminuída em indivíduos afectados por determinadas
patologias motoras
Neste âmbito enquadram-se as ortóteses, as quais permitem corrigir deformações,
estabilizar lesões ou auxiliar na movimentação de partes do corpo, tendo assim um papel muito
relevante na reabilitação dos indivíduos afectados.
Consoante a zona anatómica em causa e a funcionalidade pretendida, utilizam-se
diferentes tipos de ortóteses.
A principal limitação que estes aparelhos ortopédicos apresentam baseia-se num
eventual desconforto que pode acontecer nas zonas de transferência de carga entre a pele do
indivíduo e a ortótese, o qual pode até originar lesões cutâneas.
O desconforto é devido ao atrito ocorrido entre a pele e o revestimento da ortótese, que
está relacionado com as forças geradas na interface de pele/ortótese.
Dado que na maioria das ortóteses, a área de contacto com a pele é coberta com
espumas, esses materiais assumem uma importância fundamental no desempenho destes
dispositivos. Diversas propriedades dos revestimentos irão afectar o comportamento tribológico
dos sistemas.
O principal objectivo deste trabalho foi analisar o efeito da morfologia, das
propriedades mecânicas e da energia livre superficial nos valores dos coeficientes de atrito de
sistemas espumas ortopédicas/pele artificial.
Para tal, começou-se por caracterizar a pele artificial, analisando a sua topografia por
microscopia de força atómica (AFM) e determinando a sua hidrofilicidade através do método da
gota séssil. A energia livre superficial da pele foi também estimada.
Seleccionaram-se diferentes espumas ortopédicas disponíveis no mercado, por forma a
abranger um conjunto de materiais com diferentes características. A morfologia das células das
espumas foi estudada recorrendo à microscopia electrónica de varrimento (SEM). A energia
livre de superfície das espumas foi determinada com base em medidas de molhabilidade , e as
propriedades mecânicas foram obtidas a partir de ensaios de compressão-descompressão.
Para finalizar foram realizados testes tribológicos num nanotribómetro, entre as
espumas e a pele artificial, aplicando diferentes cargas.
Para averiguar o efeito de cada uma das propriedades das espumas sobre o
coeficiente de atrito, escolheram-se materiais com todas as outras características avaliadas o
mais similares possíveis, e fez-se uma análise comparativa.

1

1. Fundamentos teóricos
1.1 Ortóteses
Uma ortótese é um dispositivo usado de forma externa no corpo com o objectivo de
ajudar na reabilitação, alterando as propriedades estruturais e funcionais do sistema
neuromuscular e do esqueleto [1].
Tem assim como funções fixar uma zona do corpo, evitar deformações, proteger de
lesões ou ajudar na função necessária [2].
De acordo com a sua função, podem ser usados os seguintes tipos de ortóteses:


Estabilizadoras:

Fixam

numa

posição

e

evitam

movimentos

indesejáveis, o que é particularmente útil em fracturas ;


Funcionais: Apresentam uma flexibilidade razoável e consentem um

movimento limitado;


Correctoras: Utilizadas para rectificar deformações do esqueleto,

nomeadamente na infância para certos membros;


Protectoras: Protegem órgãos afectados [3].

As ortóteses podem ser colocadas em diferentes localizações do corpo, como por
exemplo: em extremidades inferiores (pé, anca, joelho, tornozelo-pé, joelho-tornozelo-pé e
anca-joelho-tornozelo-pé), em extremidades superiores (mão, pulso-mão, cotovelo, cotovelopulso-mão e ombro) e na zona espinal (cervical, abdominal, torácica-abdominal e cervicaltorácica-abdominal), como pode ser verificado na figura 1 [4].

Figura 1. Exemplos de ortóteses, adaptado de [81].

A grande diferença relativamente entre as ortóteses e as próteses, prende-se com o
facto de que as próteses são aplicadas no corpo para substituir partes em falta, nomeadamente
membros [5].

2

As ortóteses são fabricadas para fornecer ao paciente uma função máxima com o
mínimo de desconforto e esforço, logo há que ter em conta as propriedades dos materiais
escolhidos, nomeadamente:


Elasticidade- conseguir recuperar as dimensões iniciais;



Plasticidade- mudar de forma sem haver ruptura;



Maleabilidade- poder ser remodelado;



Resistência à corrosão ou deterioração [2].

Hoje em dia, existe um conjunto diverso de materiais de protecção de várias durezas e
graus de amortecimento com boas possibilidades de aplicação. Os mais utilizados são os
polietilenos (PE) como o Plastazote, os copolímeros de polietileno como o EVA (etil vinil
acetato), e os poliuretanos (PU).
De entre estes, as espumas termoplásticas de PE e EVA são as mais escolhidas para
aplicação directa no corpo humano [6] [7]. As espumas de polietileno podem ser usadas em
ortóteses como o colar cervical mole e o colar de Philadelphia, e ainda, em calçado ortopédico
tal como as espumas de EVA [8].

1.2 Pele humana
A pele é o órgão do corpo humano com maior extensão, ocupando uma área entre 1,6
2

e 2,2 m em adultos, e constitui 16% do peso de uma pessoa [9] [10] [11].

1.2.1 Anatomia e fisiologia
Na figura 2, pode-se visualizar a divisão da pele nas três principais camadas
funcionais: epiderme, derme e o tecido subcutâneo [12] [13].

Epiderme

Estrato córneo

Derme

Nova
camada
de pele

Glândula
sudorípara

Tecido subcutâneo

Células gordas
Folículo capilar
Músculo erector
Glândula sebácea

Figura 2. Constituição da pele humana, adaptado de [75].

3

Na parte superior da imagem, observa-se uma camada celular avascular (epiderme), a
qual está ligada à derme e a uma camada de gordura posterior (tecido subcutâneo).
Tipicamente, a espessura da epiderme está entre os 40 µm e os 80 µm e a espessura da
derme entre os 800 µm e os 1500 µm, enquanto a espessura do tecido subcutâneo varia
consoante a zona do corpo e o tipo de alimentação da pessoa [13].
No interior das diferentes camadas, encontram-se folículos capilares, vasos
sanguíneos, glândulas e receptores sensoriais [9] [12].
Na epiderme, os queratinócitos (células) diferenciam-se e migram para a superfície da
pele, havendo assim uma alteração do seu tamanho, forma e composição, originando os
corneócitos [9] [11] [12] [14].
Estes estão envolvidos em lípidos epidérmicos lamelares, que têm como função evitar
a perda excessiva de água [9].
A derme atribui à pele uma grande elasticidade e resiliência, uma resistência à ruptura
e estabilidade. A sua composição baseia-se numa rede estreitamente empacotada de fibras de
colagénio e elastina, as quais estão inseridas numa substância semelhante a um gel de fluidos
intersticiais (ácido hialurónico), fibroblastos, proteoglicanos e água [9] [12] [14].
Relativamente ao tecido subcutâneo, este apresenta-se entrelaçado por um tecido
conjuntivo fraco e fibras fortes, tendo assim como função auxiliar a ligação da pele a músculos
e tecidos ósseos. Ainda garante o armazenamento de nutrientes na forma de gorduras líquidas,
o que permite a absorção de choque e o isolamento das baixas temperaturas [9] [12].
O estrato córneo é a camada mais externa da pele, funcionando assim como uma
barreira para o corpo contra factores ambientais hostis, evitando a saída excessiva de água e
impedindo a entrada de microorganismos ou compostos químicos.
Também serve como receptor para sensações como por exemplo a pressão, o calor e
o frio, os quais são reconhecidos pelos nervos específicos que se encontram na pele sob a
epiderme. A espessura média do estrato córneo está entre os 10 µm e os 20 µm [13].

1.2.2 Propriedades mecânicas
A pele humana apresenta um comportamento complexo quando entra em contacto com
superfícies, devido à sua estrutura viscoelástica. Esta advém principalmente de contribuições
da derme mas também da epiderme. A parte viscosa da deformação da pele deve-se ao
movimento do fluido intersticial pela rede fibrosa, enquanto a parte elástica é associada à
distensão das fibras de elastina e de colagénio [15].
A estrutura derme-epiderme desempenha assim um papel importante para as
propriedades de atrito, porque influencia e determina a resposta mecânica total da pele.
Os módulos de elasticidade da pele humana in vivo divergem muito consoante vários
factores como os métodos utilizados, a parte do corpo, o grau de hidratação da pele, a idade
da pessoa, entre outros [16].

4

Na determinação das propriedades mecânicas da pele, utilizam-se técnicas
experimentais, que se baseiam em medições de torção, sucção, extensibilidade ou propagação
de ondas [9].
Na figura 3, pode-se observar um estudo que revela que para a camada córnea (SC)
3

9

registam-se valores de módulo de elasticidade (~10 Pa a 10 Pa) de pelo menos 2 ordens de
2

6

2

grandeza superiores aos da derme (~5*10 Pa a 45*10 Pa) e do tecido subcutâneo (~1,2*10
3

Módulo de elasticidade [Pa]

Pa a 30 *10 Pa).

Média

SC

Epiderme

Derme

Tecido
Subcutâneo

Figura 3. Gráfico representativo dos módulos de elasticidade para
as diferentes camadas da pele humana, adaptado de [9].

1.3 Espumas
As estruturas celulares são muito comuns na natureza, nomeadamente em materiais
como a cortiça, a madeira e o coral. Durante muito tempo apenas utilizaram-se esses materiais
naturais, contudo hoje em dia já se fazem os próprios materiais celulares.
Os materiais celulares sólidos, como as espumas, são materiais microcelulares obtidos
normalmente por polímeros, nos quais se criam internamente espaços vazios (células) onde
estão presentes gases [17] [18] [19].
As dimensões de célula nos materiais microcelulares podem ser menores que 1 µm até
centenas de micrómetros ou mais em materiais sintéticos. A espessura das paredes das
células varia normalmente entre os 1 e os 10 µm [17] [19].
As espumas são um grupo de materiais com características essenciais para algumas
aplicações de absorção de energia, nomeadamente na área do acondicionamento de materiais
(embalagens) e na indústria automóvel [17] [20] [18]. Também têm diversas aplicações na área
biomédica, nomeadamente nas ortóteses e em engenharia de tecidos [21].
Têm como vantagens uma boa resistência mecânica, uma densidade reduzida e um
preço acessível [17] [20].

5

Nas espumas, há três factores principais que influenciam as propriedades celulares,
tais como o tipo de sólido usado na composição das espumas, a estrutura e tamanho das
células, e a densidade relativa [22].

1.3.1 Tipos
Existem vários tipos de espumas no mercado, as quais são fabricadas essencialmente
por polímeros. A selecção do polímero afecta as características da espuma obtida, como tal há
que ter conta a categoria em que ele se insere, segundo as propriedades mecânicas do
mesmo. No caso de ser da classe dos elastómeros origina espumas flexíveis, enquanto se for
da classe dos vítreos produzem-se espumas rígidas [18].

1.3.1.1 Espumas de polietileno
O fabrico de espumas de polietileno tem vindo a crescer nos últimos tempos, devido às
suas excelentes propriedades mecânicas e preço reduzido [18].
As espumas de polietileno de baixa densidade (PEBD) encontram-se entre as mais
usadas nas ortóteses. Normalmente são de células fechadas e são classificadas como semirígidas ou flexíveis, dependendo das suas densidades e formas [23] [24].
A resistência das espumas de polietileno é muito elevada em comparação com outras
espumas. Contudo, as espumas de PEBD têm mais probabilidade de perder a sua espessura
ao longo do tempo relativamente às espumas de polietileno de alta densidade [23].
Uma das maiores utilizações das espumas PEBD é no ramo das embalagens para
proteger produtos contra danos, já que estas têm um índice de absorção de energia elevado.
Apresentam assim boas características de amortecimento para objectos, exercendo tensões
estáticas, isto é, tensões a uma força constante ou que varia lentamente com o tempo, com
valores entre cerca de 0,003 e mais de 0,10 MPa, o que nenhumas outras espumas semirígidas ou flexíveis disponíveis no mercado são capazes de proporcionar [23] [24].
Para além disso, são amplamente utilizadas em aplicações relacionadas com flutuação,
devido quer às suas excelentes propriedades de resistência à água quer à baixa densidade
que possuem [23] [24].
As espumas de PEBD apresentam inúmeras vantagens, nomeadamente uma
excelente resistência a grande parte dos químicos, orgânicos e inorgânicos. Contudo, a acção
de agentes oxidantes fortes a temperaturas mais elevadas e a exposição prolongada aos raios
ultravioleta da luz solar podem levar à degradação das mesmas [23].
O Plastazote é a espuma de polietileno de baixa densidade mais utilizada na indústria
ortopédica, nomeadamente na área do calçado. Tem como características principais o facto de
ser bastante leve e de ser moldável a 40ºC. O Pelite é um outro exemplo de uma espuma de
polietileno normalmente associada ao revestimento de próteses [25].

6

1.3.1.2 Espumas de EVA
As espumas de EVA são espumas de células fechadas produzidas a partir do
copolímero de etileno e vinil acetato. Têm grande aplicação no ramo do calçado ortopédico
como material de revestimento e de amortecimento [25].

1.3.1.3 Espumas de poliuretano
As espumas de poliuretano distinguem-se relativamente às referidas anteriormente
devido ao facto de apresentarem células abertas. Esta configuração permite uma melhor
dissipação do calor e da humidade, e uma maior durabilidade à deformação por compressão.
Apresentam uma excelente memória e não se acomodam à pressão ou às zonas
ósseas [25].

1.3.2 Estrutura e tamanho de célula
Uma das características mais importantes das espumas é a estrutura das células. As
diferentes vias de fabrico e as propriedades do material a ser espumado originam materiais de
espuma sólida com estruturas celulares de célula aberta, fechada ou então com ambas [26].
Na figura 4 podem-se observar representações de células abertas (à esquerda) e de
células fechadas (à direita).

Figura 4. Tipos de células existentes em espumas: aberta à esquerda e fechada à
direita, adaptado de [7].

Em espumas de célula aberta, as células estão interligadas, e apresentam uma alta
permeabilidade a gases e vapor. Mostram assim um módulo de compressão elevado, fazendo
com que sejam muito úteis em aplicações associadas a embalagens [18] [26].
Em espumas de célula fechada, o fluxo de gases é muito baixo, uma vez que estes
estão retidos na célula. A passagem de gases ocorre em geral apenas caso haja ruptura das
paredes celulares. Há assim um módulo de compressão reduzido neste tipo de espumas [18]
[26].
Em condições de aplicação de uma carga durante um curto espaço de tempo, a
espessura do material volta completamente à inicial após a remoção da carga. Quando a carga
é prolongada, o material não volta logo à espessura inicial, uma vez que apesar da estrutura
ser de célula fechada, as paredes podem permitir a libertação de gases.

7

Após a remoção da carga, os gases regressam para dento das células. Esta
recuperação resulta da energia potencial armazenada na matriz celular [7].

As propriedades mecânicas das espumas celulares estão dependentes da quantidade
de células abertas e do tamanho das células [7].
Na figura 5, podem-se visualizar alguns resultados obtidos em ensaios de compressão
por Skochdopole para espumas de polietileno. Na figura 5 representa-se a variação da
percentagem de compressão com a carga aplicada para materiais com diferentes
percentagens de células abertas [7].

Carga compressiva (PSI)

Percentagem de
células abertas
Espuma de
polietileno

% Compressão
Figura 5. Gráfico ilustrativo das forças aplicadas para um certo
valor de compressão, tendo em conta a quantidade de células
abertas, adaptado de [7].

Concluiu-se então, que o aumento da quantidade de células abertas leva à diminuição
da força necessária para um certo nível de compressão, resultando em menores valores de
Módulo de Young e de tensão de cedência.
Por contraste, quando a quantidade de células abertas diminui necessita-se de uma
força maior para um atingir um certo nível de compressão, levando a maiores valores de
Módulo de Young e de tensão de cedência [7].

8

Com o objectivo de compreender estes resultados, Skochdopole propôs um modelo
para a espuma que compara dois componentes, as paredes celulares e o ar retido nas células,
conforme está apresentado na figura 6 [7].

Carga

Carga

Paredes celulares

% Compressão

% Compressão

Figura 6. Modelo comparativo do comportamento de
uma espuma sujeita a compressão: ar retido nas
células e paredes celulares. Adaptado de [7].

Ao aplicar-se força, verificou-se que quando os valores desta são reduzidos há
resistência por parte das paredes celulares. Todavia, quando se aumentam estes valores da
força aplicada, os níveis de resistência das paredes diminuem, até chegarem à ruptura [7].
Quando há uma quantidade pequena de células abertas, a força compressiva espalhase por um maior número de paredes celulares, levando a uma maior resistência.
Os gases aprisionados nas células fechadas oferecem também maior resistência à
compressão. As espumas de células abertas deixam escapar os gases, o que leva à redução
da resistência à compressão [7].

Em relação ao tamanho da célula das espumas, as espumas de células maiores têm
menos nervuras e paredes celulares do que as de células menores.
As paredes celulares são mais facilmente deformáveis quanto maior o tamanho das
células. Logo, nas estruturas de células menores, a resistência à compressão é maior,
resultando em maiores valores de Módulo de Young e de tensão de cedência. Contrariamente,
nas estruturas de células maiores, a resistência é menor levando a menores valores de Módulo
de Young e de tensão de cedência [7].

9

1.3.3 Densidade relativa
Um dos parâmetros mais importantes que determina as propriedades de um material
celular sólido é a sua densidade relativa, /s, em que é a densidade do material celular e s
é a densidade do sólido nas células.
A densidade do material celular é menor do que a densidade do sólido nas células.
Num material celular a densidade relativa (/s) costuma apresentar valores inferiores a 0,3
[19].
Gibson and Ashby (1997) propuseram relações de dependência entre a densidade
relativa e o Módulo de Young relativo quer para espumas de célula aberta quer espumas de
célula fechada, as quais são apresentadas nas seguintes equações respectivas:








= ( )

Eq. (1),











= ( ) + ( - ) ( ) +






(- )

Eq. (2),

em que o C1~1, o p0 corresponde à pressão dos gases no interior das células, o à fracção
de material sólido contido nas arestas das células, o E ao módulo de Young da espuma e o Es
ao módulo de Young relativo [17].

1.3.4 Comportamento mecânico
A análise do comportamento mecânico de um material pode ser feita medindo-se a
força necessária para desenvolver um certo nível de compressão.Esta informação revela-se útil
dado que permite a avaliação da resposta de uma espuma sob condições de carga [7].
Na figura 7, observa-se uma curva da tensão (força de compressão dividida pela área
de secção transversal inicial) vs deformação (variação do comprimento dividido pela espessura
inicial) de uma espuma, neste caso o poliuretano, resultante da análise dum teste de
compressão-descompressão.

.

Tensão

Densificação
Elasticidade
linear
Plateau

Deformação
Figura 7. Gráfico representativo da resposta de uma espuma de
poliuretano após um teste de compressão-descompressão. A primeira
curva representa a compressão da espuma e a segunda curva a
descompressão da espuma. Adaptado de [20].

10

Na curva são visíveis três regiões distintas: a elasticidade linear, o plateau (ou patamar
constante) e a densificação. Estas zonas estão relacionadas com diferentes mecanismos de
deformação.
Na primeira zona, quando a tensão () aplicada é reduzida, a deformação () é
elástica. Este comportamento elástico apresenta-se como sendo linear, isto é, a deformação é
proporcional à tensão. A relação verificada entre estas duas grandezas é traduzida pela lei de
Hooke [27]:
=

Eq. (3),

Nesta zona inicial obtem-se assim o módulo de elasticidade da espuma (módulo de
Young (E)), a partir do declive da recta.
A região plateau ocorre quando atinge-se uma tensão crítica, onde começa a ocorrer
um dos seguintes mecanismos de deformação das células, dependendo do material que
compõe as paredes celulares: para um metal verifica-se uma deformação plástica, para uma
cerâmica uma fractura e para um polímero um dobramento elástico.
A ruptura continua a uma tensão mais ou menos constante ao longo desta zona, até
que haja um colapso das células levando ao contacto com as paredes celulares opostas. Nesta
altura ocorre a densificação do material, porque o volume de espaços vazios diminui e
aproxima-se da densidade relativa 1. Na curva verifica-se um aumento súbito da tensão
aplicada [19] [22].
Quando se deixa de aplicar uma carga, a tensão varia de forma não linear com a
deformação [20] [26].
A área sob a curva de compressão está relacionada com a energia, por unidade de
volume, absorvida pela espuma durante o teste. Pode-se assim verificar que uma grande
quantidade de energia pode ser absorvida pelo material celular com a tensão quase constante
[20].
As espumas podem sofrer grandes deformações em compressão e absorver
quantidades razoáveis de energia, a qual é dissipada através da flexão das células, da
deformação ou ruptura [19].

2. Tribologia
A tribologia da pele humana é um dos campos mais estudados para resolver certos
problemas do quotidiano, uma vez que a pele é uma das superfícies que está em constante
interacção durante o movimento [28] [16].
Habitualmente, os estudos tribológicos relacionavam-se mais com a área da cosmética
ou da dermatologia, incidindo sobre tópicos como a condição da pele, lesões e cicatrização de
feridas [9] [29].

11

Contudo, hoje em dia, têm-se baseado mais na compreensão dos mecanismos de
contacto existentes entre a pele e os materiais em contacto, e do atrito em sistemas
envolvendo a pele humana, os quais são fundamentais para garantir uma maior qualidade das
superfícies que interagem com a mesma [9] [29] [16].
Há assim um maior foco por parte da investigação, no estudo de têxteis que contactam
com a pele para aplicações médicas e desportivas [10].
Na figura 8, está representada uma típica situação de contacto verificada na tribologia
da pele humana que consiste na interacção entre a superfície de um material e a superfície da
pele, na presença de um "lubrificante" e rodeado por um ambiente específico [28].
Condições operacionais

Material

Ambiente
Lubrificante

Pele

Atrito
Figura 8. Situação de contacto entre a pele e um material num
sistema tribológico, adaptado de [28].

As características de atrito de superfícies em movimento relativo são normalmente
descritas pelo coeficiente de atrito (µ) (equação 4), o qual representa-se pela razão entre a
força de atrito (Fa) (paralela à superfície de contacto) que se opõe ao movimento e a força
normal (Fn) (perpendicular à superfície de contacto) que pressiona os corpos um contra o outro
como mostrado na figura 9 [10] [30].

µ=




,

Eq.(4),

Figura 9. Acção da força de atrito e da força normal no contacto entre duas
superfícies. Adaptado de [80].

12

O atrito da pele depende das características tanto da pele humana como do material
em contacto, e ainda do meio ambiente [31].
Parâmetros de contacto, tais como a carga exercida e a velocidade de deslizamento, e
ainda da presença de substâncias, sejam elas temporárias como os cosméticos ou libertadas
naturalmente como o suor e o sebo, são determinantes para o comportamento observado [29]
[10] [9].

A pele humana apresenta-se como tendo características viscoelásticas e não lineares.
Logo, as regras de Amontons', as quais sugerem que a força de atrito é directamente
proporcional à força normal e independente da área de contacto aparente em meio seco, não
se verificam para o atrito da pele [9] [10].
A grande parecença com as propriedades viscoelásticas dos elastómeros levou assim
a estudar-se o atrito destes para compreender os resultados do atrito da pele [29].
Este baseia-se num modelo de atrito de dois termos, sem interacção entre os mesmos:

µ=µ adesão + µ deformação

Eq.(5),

Sendo que adesão tem um papel mais determinante do que os mecanismos de
deformação no atrito da pele humana.
Em ambiente seco, a adesão causada por forças atractivas (van der Waals,
electrostáticas, hidrogénio, hidrofóbicas, entre outras) na interface pele-material, e ainda a
deformação do elemento mais suave, afectam o coeficiente de atrito obtido (COF) [10] [29].

A superfície da pele é habitualmente protegida por um filme hidrolipídico ácido (pH
entre 4 e 6), o qual controla a flora da pele, protegendo o corpo contra agressões
microbiológicas, mecânicas e químicas [10] [9].
Este filme é constituído por água do suor e sebo das glândulas sebáceas, cobrindo
assim a camada exterior da pele como uma emulsão água-óleo.
Segundo Pailler-Mattei, o filme lipídico da pele influencia as propriedades de adesão da
mesma, por causa de fenómenos de capilaridade. Enquanto numa pele normal a força de
adesão é elevada, quando há remoção do filme esta força diminui [9].
A presença de humidade na superfície da pele pode alterar a intensidade de percepção
da rugosidade do material. Logo, um têxtil concebido para ser confortável em condições de
baixa humidade, pode passar a ser desconfortável com alta humidade ou condições de
transpiração [30].
Uma maior humidade origina assim um maior atrito na superfície da pele, como é
visível nas actividades desportivas em que o têxtil adere com mais facilidade [9].
O facto do atrito da pele aumentar quando esta está molhada, deve-se ao maior
amolecimento da sua superfície e a um reduzido módulo de elasticidade, levando assim a uma
maior adesão [29].

13

Quando a pele está saturada e o excesso de água se acumula na interface, as pontes
capilares entre a pele e a superfície do material em contacto revelam-se importantes [29].
Neste caso, acontece a chamada lubrificação hidrodinâmica, em que há a separação integral
das superfícies de deslizamento por uma camada de líquido. Há assim uma substituição da
componente de adesão pela contribuição do atrito viscoso [9].

Os coeficientes de atrito obtidos para a pele, apesar de serem muito diversificados,
apresentam um limite superior que é determinado pelas propriedades de corte da pele, em
condições secas, húmidas ou molhadas, quando aderindo a uma superfície.
Enquanto, a pele humana a seco é normalmente caracterizada por coeficientes de
atrito relativamente baixos (~0,5) e independentes de força aplicada, a pele húmida ou molhada
apresenta valores mais elevados (> 1), os quais diminuem com o aumento da força aplicada
[29] [32].
No caso da pele completamente molhada, ou seja, em lubrificação hidrodinâmica, os
valores de coeficiente de atrito são muito baixos (90 ) a superfície é considerada hidrofóbica como é visível na
figura 17 [46].

Hidrofílica
90

Figura 17. Representação dos valores dos ângulos de contacto numa superfície hidrofílica (à
esquerda) e hidrofóbica (à direita). Adaptado de [74].

23

A energia livre superficial das espumas (SV) foi determinada recorrendo ao método da
média geométrica que relaciona esta grandeza com a tensão superficial do líquido ( LV) através
da seguinte equação:





( + ) = +
d

Eq. (9),

p

onde e são as componentes dispersiva e polar da tensão/energia livre superficial,
d

p

de tal modo que = + .
Para determinar SV, a equação foi aplicada para dois líquidos diferentes (água e
diodometano), cujos ângulos de contacto com a superfície das espumas se mediu.
As componentes dispersivas e polares das tensões superficiais dos líquidos foram




retiradas da literatura:
= 21,3 mJ/m e =50,7 mJ/m para a água, e
= 49,99 mJ/m e
2



2

2

2

=0,4mJ/m para o diiodometano [47].
Conseguiu-se assim obter os valores das componentes polares e dispersivas das
energias livres de superfície para cada uma das espumas, bem como o seu valor total e a sua


polaridade ( / ).

3.2.4.5 Coeficientes de atrito
A fim de obter os valores de coeficiente de atrito entre as superfícies (pele e espuma),
foram realizados ensaios tribológicos num nanotribómetro CSM [48]
Na figura 18, pode-se visualizar o equipamento utilizado e um esquema da montagem
experimental. Observa-se uma representação do elemento essencial do nanotribómetro, o
cantilever, onde está fixo o contra corpo (espuma). O cantilever possui uma dupla mola que
deflecte lateralmente e verticalmente e dois sensores de deslocamento de fibra óptica que dão
conta destas deflecções. Destaca-se também no equipamento o actuador piezoeléctrico,
responsável pelos movimentos da base, onde se colocou a pele artificial, e o transdutor de
força (não representados no esquema) [49].

Figura 18. Representação global de todo o sistema envolvido nos ensaios nanotribológicos,
adaptado de [49].

24

Os testes foram feitos com diferentes cargas (100 mN,150 mN, 200 mN e 250 mN). A
pele artificial foi colocada no estado hidratado sobre uma superfície esférica com um raio de
1,25 cm, tendo sido fixada com auxílio de alfinetes. Os ensaios foram feitos com uma
velocidade de 0,65 cm/s e uma amplitude de movimento de 1mm. A sua duração foi de 10
minutos cada, tendo sido realizados em triplicado para cada espuma.

4.Resultados
4.1 Caracterização da pele artificial
4.1.1 Microscopia de força atómica (AFM)
Através da análise da pele artificial por microscopia de força atómica, foi possível
observar a estrutura da superfície de forma pormenorizada, e determinar a rugosidade média
(Ra). Na figura 19 observa-se uma imagem da pele em 2D e 3D e o seu perfil, obtidos por
AFM.
557.48 nm

300
250

Z[nm]

200
150
100
50

4.0µm

0
0

5

10

15

20

X[µm]
0.00 nm

Figura 19. Imagem AFM em 3D e 2D da pele artificial e o perfil correspondente à linha presente na imagem
2D.

Após a análise de vários locais diferentes da amostra, obteve-se como rugosidade
média da área total (Ra) o valor de 54,3 ± 6 nm.

4.1.2 Molhabilidade
Recorrendo ao método de gota séssil obtiveram-se os valores dos ângulos de contacto
entre a pele artificial e os líquidos (água e diodometano). A partir destes, calculou-se os valores
de energia livre superficial (componente dispersiva, componente polar e valor total) e a
polaridade da pele artificial (ver tabela 2).
Tabela 2. Ângulos de contacto da água e diodometano com a pele artificial, energia livre superficial da
pele (componente dispersiva, componente polar e valor total) e respectiva polaridade.

Pele
hidratada

Água (°)

Diodometano (°)

sd (mJ/m2)

sp(mJ/m2)

s(mJ/m2)

Polaridade

22 ± 4

42 ± 4

33 ± 2

36 ±3

70 ± 2

0,52 ± 0,04

25

Na pele artificial, os valores dos ângulos de contacto com a água e com o diodometano
foram baixos, cerca de 22° e 42° respectivamente.
As componentes dispersivas e polares apresentaram valores semelhantes, entre os 33
2

e os 36 mJ/m , levando assim à obtenção de valores muito altos de energia livre superficial (70
2

mJ/m ).
A polaridade registada foi cerca de 50%.

4.2 Caracterização das espumas
4.2.1 Estrutura das espumas
Através da técnica de microscopia electrónica de varrimento (SEM) observou-se a
estrutura de todas as espumas estudadas. Nas figuras 20 à 36 são apresentadas
fotomicrografias obtidas para as várias espumas, com duas ampliações distintas: uma mais
baixa, para visualizar as células e poder determinar-se o raio das células, e uma mais alta para
avaliar a espessura das paredes das células.

Figura 20. SEM da espuma Eva com diferentes ampliações

Figura 21. SEM da espuma Eva Geriátrico com diferentes ampliações

26

Figura 22. SEM da espuma Nora Lunairflex com diferentes ampliações

Figura 23. SEM da espuma Multiform azul com diferentes ampliações

Figura 24. SEM da espuma Multiform branco com diferentes ampliações

27

Figura 4. Multiform branco

Figura 25. SEM da espuma Multiform castanho com diferentes ampliações

Figura 26. SEM da espuma Multiform laranja com diferentes ampliações

Figura 27. SEM da espuma Multiform vermelho com diferentes ampliações

28

Figura 28. SEM da espuma Pelite claro com diferentes ampliações

Figura 29. SEM da espuma Pelite escuro com diferentes ampliações

Figura 30. SEM da espuma Plastazote branco com diferentes ampliações

29

Figura 31. SEM da espuma Plastazote claro normal com diferentes ampliações

Figura 32. SEM da espuma Plastazote claro perfurado com diferentes ampliações

Figura 33. SEM da espuma Poliuretano claro com diferentes ampliações

30

Figura 34. SEM da espuma Poliuretano escuro com diferentes ampliações

Figura 35. SEM da espuma Sensofte maior espessura com diferentes ampliações

Figura 36. SEM da espuma Sensofte menor espessura com diferentes ampliações

31

Ao observarem-se as imagens verificou-se que a maioria das espumas apresenta
células com uma estrutura hexagonal, à excepção dos poliuretanos que têm células com uma
estrutura claramente circular. De entre as espumas com células hexagonais, destacam-se os
Plastazotes normal e perfurado por exibirem um tamanho de célula muito superior às restantes
espumas.
Dentro de cada família de espumas há uma grande similaridade nas estruturas. Como
excepção apresenta-se o Nora nos Evas.

Através do software de tratamento de imagens, Fiji, os valores do raio das células e a
espessura das suas paredes foram determinados para as diferentes famílias de espumas
estudadas (ver da tabela 3 à 8).

Tabela 3. Valores do raio das células e da espessura das paredes das células, relativos às espumas Evas

Espumas

Raio (µm)

Espessura (µm)

Eva

64 ± 14

3±1

Eva geriátrico

68 ± 8

4±1

Nora Lunairflex

52 ± 15

1,2 ± 0,2

Tabela 4. Valores do raio das células e da espessura das paredes das células, relativos às espumas
Multiforms

Espumas
Multiform azul

Raio (µm)
82 ± 8

Espessura (µm)
1,3 ± 0,5

Multiform branco

64 ± 10

1,4 ±0,5

Multiform castanho

73 ± 12

3±1

Multiform laranja

68 ± 9

3±1

Multiform vermelho

76 ± 14

2,5 ± 0,6

Tabela 5. Valores do raio das células e da espessura das paredes das células, relativos às espumas
Pelites

Espumas

Raio (µm)

Espessura (µm)

Pelite claro

82 ± 14

1,4 ±0,6

Pelite escuro

75 ± 11

2,7 ± 0,9

32

Tabela 6. Valores do raio das células e da espessura das paredes das células, relativos às espumas
Plastazotes

Espumas

Raio (µm)

Espessura (µm)

Plastazote branco

78 ± 8

1,2 ± 0,3

Plastazote claro normal
Plastazote claro
perfurado

127 ± 18

1,4 ± 0,5

133 ± 21

1,5 ± 0,5

Tabela 7. Valores do raio das células e da espessura das paredes das células, relativos às espumas
Poliuretanos

Espumas

Raio (µm)

Espessura (µm)

Poliuretano claro

87 ± 21

1,2 ± 0,3

Poliuretano escuro

87 ± 20

1,4 ± 0,3

Tabela 8. Valores do raio das células e da espessura das paredes das células, relativos às espumas
Sensoftes

Espumas

Raio (µm)

Espessura (µm)

Sensofte de maior
espessura
Sensofte de menor
espessura

59 ± 9

2,4 ± 0,6

55 ± 7

1,5 ± 0,6

Ao analisarem-se os valores do raio das células nas diferentes espumas verificou-se
que variam entre os 52 e os 133 µm.
As espumas com o maior tamanho de célula são os Plastazotes normal e perfurado,
enquanto as que apresentam o menor tamanho de célula são os Sensoftes e o Nora.
Dentro de cada família de espumas há uma grande semelhança nos valores do raio
das células, à excepção do Plastazote branco nos Plastazotes.
Quanto aos valores da espessura das paredes das células das espumas, estes variam
entre os 1,2 e os 3,8 µm.

Com a obtenção dos valores do raio e da espessura das paredes das células,
2

conseguiu-se determinar os valores da área de contacto em 1 cm de cada espuma, os quais
estão apresentados na tabela 9.

33

2

Tabela 9. Áreas de contacto obtidas em 1 cm de cada espuma
2

2

Espumas

Área de contacto em 1 cm (cm )

Eva
Eva Geriátrico

0,05

Nora Lunairflex

0,03

Multiform azul
Multiform branco
Multiform castanho
Multiform laranja
Multiform vermelho

0,03
0,03

Pelite claro

0,02

Pelite escuro

0,04

Plastazote Branco
Plastazote claro normal
Plastazote claro perfurado

0,02

Poliuretano claro

0,02

Poliuretano escuro

0,02

Sensofte maior espessura
Sensofte menor espessura

0,05

0,07

0,05
0,05
0,04

0,01
0,01

0,03
2

Através dos resultados, observou-se que os valores da área de contacto em 1 cm das
2

2

espumas variam desde os 0,01 cm e os 0,07 cm , o que revela uma área de contacto real
baixa.

4.2.2 Densidades
Tendo em conta os cálculos efectuados, após a pesagem das massas e a
determinação dos volumes de cada espuma, obteve-se os valores de densidade apresentados
na tabela 10. A partir destes foi-se calcular os valores de densidade relativa para as espumas,
cujos valores de densidade do material sólido conseguiram-se obter na literatura,
3

3

nomeadamente do polietileno (0,925 g/cm ) [50] e do poliuretano (1,25 g/cm ) [51].

Tabela 10. Densidades das espumas estudadas
3

Espumas

Densidades (g/cm )

Eva
Eva Geriátrico

0,14

Nora Lunairflex

0,18
0,11

Multiform azul
Multiform branco
Multiform castanho
Multiform laranja
Multiform vermelho

0,15
0,15

Pelite claro

0,16

0,15
0,14
0,14

34

Pelite escuro

0,18

Plastazote Branco
Plastazote claro normal
Plastazote claro perfurado

0,10

Poliuretano claro

0,28

Poliuretano escuro

0,29

Sensofte maior espessura
Sensofte menor espessura

0,17

0,05
0,05

0,23

Ao analisarem-se os valores de densidade nas diferentes espumas verificou-se que
3

variam entre os 0,05 e os 0,29 g/cm . As espumas que apresentam maiores valores de
densidade são os Poliuretanos, enquanto as que têm menores valores são os Plastazotes.

4.2.3 Propriedades mecânicas
A partir dos ensaios de compressão-descompressão realizados, obtiveram-se as
curvas tensão vs deformação correspondentes. Posteriormente, a partir destas determinaramse os valores de módulo de Young e de tensão de cedência para cada espuma. Os valores
obtidos são apresentados na tabela 11.

Tabela 11. Valores relativos ao módulo de elasticidade e à tensão de cedência das espumas

Espumas

Módulo de Young (MPa)

Eva

0,68 ± 0,11

Tensão de Cedência
(MPa)
0,09 ± 0,01

Eva Geriátrico

0,44 ± 0,08

0,04 ± 0,004

Nora Lunairflex

0,53 ±0,08

0,06 ± 0,01

Multiform azul

1,11 ± 0,11

0,16 ± 0,01

Multiform branco

1,05 ± 0,14

0,09 ± 0,01

Multiform castanho

0,53 ± 0,04

0,13 ± 0,01

Multiform laranja

1,29 ± 0,09

0,16 ± 0,01

Multiform vermelho

1,15 ±0,14

0,11 ± 0,02

Pelite claro

1,45 ±0,26

0,14 ± 0,01

Pelite escuro

0,79 ± 0,06

0,08 ± 0,01

Plastazote Branco

1,08 ± 0,17

0,04 ± 0,01

Plastazote claro normal

0,25 ± 0,03

0,03 ± 0,01

Plastazote claro perfurado

0,20 ± 0,03

0,03 ± 0,01

Poliuretano claro

0,20 ± 0,01

0,02 ± 0,002

Poliuretano escuro

0,30 ± 0,03

0,04 ± 0,003

Sensofte maior espessura
Sensofte menor
espessura

1,56 ± 0,25

0,12 ± 0,02

0,60 ± 0,30

0,04 ± 0,02

35

Os valores de Módulo de Young das espumas estão numa gama de valores entre os
0,2 MPa e os 1,56 MPa.
Na família dos Evas e dos Poliuretanos não existe grande diferença de valores. Nos
Multiforms, o Multiform castanho mostra valores inferiores relativamente aos outros quatro. Nos
Plastazotes verifica-se que o Plastazote branco apresenta valores superiores aos dos
Plastazotes normal e perfurado. Nos Pelites, verifica-se que o Pelite claro destaca-se em
relação ao Pelite escuro, tal como nos Sensofte o de maior espessura apresenta maiores
valores de Módulo de Young.

4.2.4. Molhabilidade
Recorrendo ao método de gota séssil obtiveram-se os valores dos ângulos de contacto
entre as espumas e os líquidos (água e diodometano). A partir destes, determinou-se a
polaridade e os valores da energia livre de superfície, com base nas equações descritas na
secção 3.2.4.4, assim como as componentes dispersivas e polares para cada espuma (ver
tabela 12).
Tabela 12. Ângulos de contacto da água e do diodometano sobre as espumas, energia livre superficial
das espumas (componente dispersiva, componente polar, valor total) e respectiva polaridade.
d

Espumas

Água (°)

Diodometano
(°)

s
2
(mJ/m )

s (mJ/m )

s (mJ/m )

Polaridade

Eva

102 ± 5

36 ± 1

42 ± 1

0,04 ±0,20

43 ± 1

0,00 ± 0,01

Eva
Geriátrico

106 ± 5

100 ± 3

8±1

3±2

11 ± 2

0,3 ± 0,2

Nora
Lunairflex

118 ± 3

70 ± 2

24 ± 1

0,2 ± 0,3

24 ± 2

0,01 ±0,01

Multiform
azul

127 ± 3

68 ± 1

25,6 ± 0,8

1,5 ± 0,6

27 ± 1

0,06 ± 0,02

Multiform
branco

110 ± 6

61 ± 3

29 ± 3

0,02 ±0,30

29 ± 3

0,00 ± 0,01

p

2

2

36

Multiform
castanho

114 ± 5

73 ± 4

22 ±2

0,00 ±0,10

22 ± 2

0,00 ± 0,01

Multiform
laranja

117 ± 4

64 ± 9

27 ± 6

0,4 ± 0,7

28 ± 6

0,01 ± 0,02

Multiform
vermelho

123 ± 3

53 ± 8

35 ± 5

2±1

37 ± 7

0,06 ± 0,03

Pelite claro

123 ± 2

66 ± 4

27 ± 3

1,0 ± 0,6

28 ± 4

0,04 ± 0,02

Pelite
escuro

117 ± 2

77 ± 1

19,6 ± 0,8

0,01 ±0,1

19,6 ± 0,9

0,00 ± 0,01

Plastazote
branco

126 ± 6

67,3 ± 0,4

25,9 ± 0,7

2±1

27 ± 2

0,05 ± 0,04

Plastazote
claro normal

127 ± 4

77 ± 3

20 ± 2

0,8 ± 0,8

21 ± 2

0,04 ± 0,03

132 ± 7

71 ± 7

24 ± 5

2±2

26 ± 7

0,08 ± 0,06

50 ± 22

57 ± 5

26 ± 4

25 ±16

51 ± 14

0,5 ± 0,2

Poliuretano
escuro

61 ± 27

103 ± 6

30 ± 3

12 ± 27

42 ± 25

Sensofte
maior
espessura

118 ± 6

76 ± 3

20 ± 2

0,05 ± 0,30

20 ± 2

0,00 ± 0,02

123 ± 7

66 ± 11

26 ± 7

1±2

27 ± 9

0,04 ± 0,05

Plastazote
claro
perfurado
Poliuretano
claro

Sensofte
menor
espessura

0,3 ± 0,2

37

Ao observarem-se os resultados começou-se por verificar que a maioria das espumas
tem um comportamento hidrofóbico, apresentando ângulos de contacto com a água entre os
102° e os 132º. As espumas de poliuretano são uma excepção, apresentando um
comportamento mais hidrofílico com ângulos de contacto entre os 50° e os 61°.
Nota-se que há uma grande semelhança nos ângulos dentro de cada família.

A gama dos valores dos ângulos de contacto com diodometano está entre 36° e os
103°.
Note-se que estes valores são inferiores aos obtidos com água na maioria das
espumas. Como excepção estão as espumas de poliuretano, nas quais os valores dos ângulos
de diiodometano são superiores.

Em relação aos valores da componente dispersiva da energia livre superficial, verifica2

2

se que estes estão na gama entre os 8 mJ/m e os 42 mJ/m .
É possível observar que os valores são semelhantes dentro de cada família, à
excepção da família das espumas Eva, onde existe uma grande discrepância de valores, que
2

2

vão desde os 8 mJ/m no Eva Geriátrico aos 42 mJ/m no Eva.

Relativamente aos valores da componente polar da energia livre de superfície, verificase que estes são similares na maioria das espumas e muito inferiores às componentes
2

2

dispersivas, estando entre os 0 mJ/m e os 3 mJ/m . As espumas de poliuretano contrariam
2

esta tendência, apresentando maiores valores, os quais estão entre os 12 mJ/m e os 25
2

mJ/m .
Quanto aos valores totais da energia livre superficial, estes variam desde os 11 mJ/m

2

2

e os 51 mJ/m . Nota-se que há uma semelhança de valores dentro de cada família de
espumas, à excepção dos Evas onde existe uma grande variação de valores.
Os maiores valores da energia livre superficial são obtidos pelas espumas de
Poliuretano e pelo Eva.
Segundo a literatura, os valores da energia livre superficial do polietileno estão entre os
2

2

30 e os 34 mJ/m , e os do poliuretano rondam os 39 mJ/m [52] [53].
2

2

Em relação aos valores de polaridade, estes variam desde os 0 mJ/m aos 0,5 mJ/m .
Dentro de cada família de espumas não existem grandes diferenças de valores, à
excepção das espumas Evas.
Os maiores valores de polaridade são obtidos pelas espumas de poliuretano e pelo
Eva.

38

A variação média do volume das gotas de água durante os ensaios de molhabilidade é
dada na tabela 13.
Tabela 13. Variação percentual do volume das gotas de água nos ensaios de molhabilidade

Espumas

Redução de volume (%)

Eva
Eva Geriátrico

5±2
4±2

Nora Lunairflex

4±2

Multiform azul
Multiform branco

2±2

Multiform castanho

4±3

Multiform laranja
Multiform vermelho

4±3
3±1

Pelite claro

6±2

Pelite escuro

4±2

Plastazote Branco
Plastazote claro normal
Plastazote claro
perfurado

2±1
1,4 ± 0,6

Poliuretano claro
Poliuretano escuro

21 ± 14
18 ± 19

Sensofte maior
espessura
Sensofte menor
espessura

4±2

5±3

1,4 ± 0,2

2±1

As maiores variações foram registadas para as espumas de poliuretano (18% e 21%),
o que está de acordo com o facto de apresentarem uma estrutura de célula aberto. As
restantes espumas apresentam variações que vão desde 1,4% a 6%, o que resulta da
evaporação da água.

4.2.5 Coeficientes de atrito
Através dos ensaios nanotribológicos realizados entre as espumas e a pele artificial,
obtiveram-se os valores de coeficiente de atrito para as diferentes forças. Ajustou-se uma
função de potência às curvas força aplicada vs coeficiente de atrito, para cada espuma, como é
visível da figura 37 à 42.

39

Empiricamente é comum descrever o atrito por uma equação da seguinte forma:
µ = ,

Eq. (8)

onde o µ é o coeficiente de atrito, Fn a carga normal aplicada, o k é coeficiente de atrito
dependente da carga aplicada e o N+1 o índice de carga [54].

Figura 37. Evolução do coeficiente de atrito com a carga normal aplicada para a família de espumas Eva (à
esquerda) e resultados da regressão potencial µ = (à direita).

Figura 38. Evolução do coeficiente de atrito com a carga normal aplicada para a família de espumas
Multiform (à esquerda) e resultados da regressão µ = (à direita).

40

Figura 39. Evolução do coeficiente de atrito com a carga normal aplicada para a família de espumas
Pelite (à esquerda) e resultados da regressão potencial µ = (à direita).

Figura 40. Evolução do coeficiente de atrito com a carga normal aplicada para a família de espumas
Plastazote (à esquerda) e resultados da regressão potencial µ = (à direita).

Figura 41. Evolução do coeficiente de atrito com a carga normal aplicada para a família de espumas
Poliuretano (à esquerda) e resultados da regressão potencial µ = (à direita).

41

Figura 42. Evolução do coeficiente de atrito com a carga normal aplicada para a família de
espumas Sensofte (à esquerda) e resultados da regressão potencial µ = (à direita).

Ao observarem-se os resultados verificou-se que em todas as espumas os valores de
coeficiente de atrito diminuíram com o aumento da carga aplicada.
Segundo a regressão potencial utilizada, os valores de coeficiente de atrito
dependentes da carga aplicada (k) variaram entre os 0,26 e os 3,48, enquanto os valores dos
índices de carga (N+1) estiveram entre os -0,02 e os 0,53.
As espumas com maiores valores de coeficiente de atrito dependentes da carga
aplicada (k) foram o Eva, o Plastazote branco e o Sensofte de menor espessura.

5. Discussão de resultados
5.1 Comparação entre a pele artificial e a pele humana
A topografia da superfície da pele humana é dependente da região do corpo e
caracterizada quer por nervuras concêntricas por exemplo nas pontas dos dedos, quer por
sulcos nomeadamente no antebraço, os quais delimitam áreas de diferentes tamanhos. Há
assim uma gama variada de valores de rugosidade consoante a zona anatómica considerada,
como é verificado na literatura [9].
Tang et al caracterizaram a pele humana, recorrendo à microscopia de força atómica,
obtendo valores de rugosidade média quadrática (RMS) de 160 ± 28 nm pará áreas de 20 x20
µm [55].
Bushan et al, através da microscopia de força atómica, analisaram a pele do rato e do
porco obtendo valores de rugosidade média quadrática de 148 ± 6 nm e 274 ± 10 nm
respectivamente [56].
Starostina et al analisaram uma réplica de pele feita de borracha de silicone, obtendo
valores de rugosidade média quadrática de 48 nm [57].

42

Tendo em conta que não deve haver uma grande diferença entre o valor de rugosidade
média (Ra) e da rugosidade média quadrática (RMS), pode-se concluir que a pele humana
apresenta uma rugosidade muito maior que a pele artificial.

Relativamente à molhabilidade da pele humana, também existem variações nos
resultados consoante a zona do corpo investigada pelos autores.
Segundo as medições de Elkhyat et al. quer no antebraço quer no abdómen os valores
de ângulo de contacto com a água são altos, cerca de 91,2° e de 97° respectivamente.
Contrariamente, na testa os valores dos ângulos de contacto com a água são inferiores,
rondando os 55°, demonstrando assim ser uma zona hidrofílica. Tal facto, deve-se ao abdómen
e o antebraço serem zonas pouco ricas em sebo, enquanto a testa é uma zona com uma
grande quantidade de gordura [58]. Elkhyat et al. também determinaram o valor da energia livre
2

superficial para o antebraço obtendo valores de 38,5 mJ/m , para a componente dispersiva de
2

2

27,6 mJ/m , para a componente polar de 10,6 mJ/m e para a polaridade de 0,3 [59].
Segundo Marvon et al, no antebraço os valores dos ângulos de contacto com água e o
diodometano são cerca de 88° e de 41° respectivamente. Na testa por sua vez, os valores dos
ângulos de contacto com água e o diometano aproximam-se dos 55° e dos 34°.
Também demonstraram que os lípidos do sebo presentes na pele aumentam os
2

valores da sua energia livre superficial. No antebraço os valores rondam os 38,7 ± 6,4 mJ/m ,
2

enquanto na testa aproximam-se dos 42,5 ± 3,9 mJ/m . Relativamente às componentes
dispersivas obtiveram valores mais ou menos semelhantes nas duas zonas, entre os 35 e os
2

36 mJ/m . Notaram assim que a presença de sebo dava um carácter hidrofílico à pele [60].
Agache et al verificaram que na zona da testa a componente polar da energia
2

superficial apresenta valores próximos dos 28,3 mJ/m [61].
Comparando com a pele humana, a pele artificial apresentou maiores valores de
energia livre superficial (tabela 2) dentro da gama apresentada.

5.2 Efeito da densidade das espumas no módulo de Young
Procurou-se comprovar a influência da densidade nos valores do módulo de Young.
Para tal, compararam-se três espumas de polietileno, denominadas comercialmente por
Plastazotes, com estrutura de célula fechada. Tratando-se de um material celular, calculou-se a
densidade relativa. O módulo de Young também foi considerado em termos relativos, através
da divisão do módulo de Young obtido para cada espuma (E) pelo módulo de Young do
polietileno de baixa densidade em bulk (Es), o qual é aproximadamente 300 MPa segundo a
literatura [62].
Verificou-se que há uma relação directa entre a densidade relativa e o módulo de
Young relativo das espumas, ou seja, quando a densidade aumenta o módulo de Young
também aumenta. Como tal, o Plastazote branco, de maior densidade relativa, apresenta os
maiores valores de módulo de Young relativo (ver tabela 14 e figura 43).

43

Este comportamento tem sido extensivamente reportado por diversos autores para
outras espumas.
Linul et al realizaram testes de compressão em três espumas de poliuretano com diferentes
3

densidades (100, 160 e 300 kg/m ) e de célula fechada. Após a análise do comportamento da
tensão em função da deformação das espumas, verificaram que os valores de módulo de
Young aumentaram com a densidade [63].

Tabela 14. Tabela comparativa dos parâmetros relativos aos Plastazotes

Espumas

Densidade relativa ( / s)

Módulo de Young relativo
(E / Es)

Plastazote branco

0,112

0,004

Plastazote claro normal

0,058

0,0008

Plastazote claro perfurado

0,051

0,0007

1

0,01

0,1

1

ln(E relativo)

0,1
0,4277x2,1823

y=
R² = 0,9987

0,01
Plastazote claro
normal

Plastazote
branco

0,001
Plastazote claro
perfurado

ln(Densidade relativa)

0,0001

Figura 43. Gráfico representativo do módulo de Young relativo em função da densidade relativa

44

5.3 Efeito do tamanho de célula na molhabilidade
Com o objectivo de observar a influência do tamanho de célula na molhabilidade,
analisaram-se cinco espumas de polietileno, três Plastazotes e dois Pelites, todas com
estrutura de célula fechada e tamanho de raio de célula diferente.
Os resultados da molhabilidade das espumas de polietileno mostraram que os ângulos
de contacto não são muito sensíveis à variação do tamanho do raio da célula (ver tabela 15).

Tabela 15. Tabela comparativa dos parâmetros relativos às espumas de polietileno

Espumas

Raio da célula
(µm)

Pelite claro

82 ± 14

Pelite escuro

75 ± 11

Plastazote branco

78 ± 8

Plastazote claro normal
Plastazote claro perfurado

127 ± 18
133 ± 21

Ângulo de
contacto com
água (°)

Área de
contacto em 1
2
2
cm (cm )

123 ± 2

0,02

117 ± 2

0,04

126 ± 6

0,02

127 ± 4

0,01

132 ± 7

0,01

Observou-se ainda que o ângulo de contacto decresce ligeiramente com a área de
contacto real entre as espumas de polietileno e a água, conforme se pode observar na figura
44.
Tal era expectável, uma vez que as espumas são de célula fechada, o que resulta no
aprisionamento de ar no interior das células, o que diminui o contacto entre a água e o
polietileno.
Como tal, é de esperar um valor de ângulo de contacto com a água na espuma de
polietileno superior ao do polietileno em bulk. Tal acontece, pois segundo a literatura os valores
dos ângulos de contacto com água no polietileno estão entre os 90 e 98° [64] [65], enquanto os
valores dos ângulos de contacto na espuma de polietileno estão entre os 117° e os 132°.

45

Ângulos de contacto com água
(°)

140

130

Plastazote
claro perfurado

120

Plastazote
claro normal

110

Plastazote
branco
Pelite claro
Pelite escuro

100
90
80
0

0,01

0,02

0,03

0,04

0,05

Área de contacto em 1cm2 (cm2)

Figura 44. Gráfico representativo dos ângulos de contacto com água em função da área de contacto em
2
1cm

5.4 Efeito da adesão nos ensaios nanotribológicos
Quando os testes são realizados a uma escala reduzida, nomeadamente na
nanotribologia, existe uma preponderância por parte das forças adesivas em relação às forças
normais aplicadas [66].
A força de adesão deve-se principalmente a dois factores: à energia livre superficial
das interfaces, ou seja, à natureza molecular das ligações adesivas (van der Waals,
electrostáticas, de hidrogénio e hidrofóbicas), e à área de contacto, onde se estabelecem estas
ligações [55] [66].
A energia livre superficial determina a força da atracção de cada material, ou seja,
quanto maior o seu valor maior a atracção molecular (adesão) entre as superfícies em
contacto, levando assim a aumento da área de contacto [67].
Esta relação de proporcionalidade entre a adesão e a área de contacto é demonstrada
pelas seguintes expressões: ã 2/3 e 2/3
Relativamente à área de contacto, há que ter em conta a grande diferença existente
entre a aparente e a real. A área aparente é aquela que é normalmente medida nos testes,
enquanto a real corresponde aos contactos reais que ocorrem entre as asperezas das
superfícies em causa. A área de contacto real pode ser muito reduzida, chegando mesmo aos
0,01% da área de contacto aparente [68].
Esta reflexão introduz os resultados apresentados nas secções abaixo.

46

5.5 Efeito da carga normal aplicada no coeficiente atrito
Com o objectivo de analisar o efeito da carga normal aplicada nos valores de
coeficiente de atrito, realizaram-se ensaios nanotribológicos entre a pele artificial hidratada e as
espumas, utilizando quatro forças distintas (100,150,200 e 250 mN).
O aumento da carga normal aplicada conduziu à diminuição do coeficiente de atrito,
conforme se pode observar pelas figuras na secção 4.2.5.
Este resultado deve-se ao facto de que para cargas baixas, as forças de adesão
passam a desempenhar um papel importante na força tangencial (força de atrito), contribuindo
assim para um aumento proporcional no coeficiente de atrito [69].
Esta conclusão é comprovada por vários autores. No estudo de K.C Ludema esta
relação é demonstrada pela seguinte expressão µ -1/3 , a partir da qual verifica-se que o
coeficiente de atrito (µ) decresce com o aumento da carga normal (W) [68].
Segundo Derler, nos testes realizados com uma superfície de vidro rugoso, em
condições a seco, os coeficientes de atrito da pele foram praticamente constantes ou
ligeiramente dependentes da carga aplicada. Por contraste, nas experiências com o vidro liso,
a seco, assim como em todos os ensaios em condições húmidas, os coeficientes de atrito
diminuíram com o aumento da carga aplicada [29]. Derler realizou outro teste desta vez
recorrendo a um têxtil em contacto com a pele humana em condições húmidas. Mais uma vez
verificou que ao aumentar as cargas normais exercidas desde os 0,2 aos 15 N, os coeficientes
de atrito diminuíam [70].
El Shimi realizou ensaios recorrendo a um cilindro metálico, com qual aplicava
diferentes cargas sobre a superfície da pele humana. Através dos resultados, verificou que os
valores de coeficiente de atrito aumentavam com a diminuição das cargas aplicadas [71].
Huaping Xiao et al também realizaram testes de atrito entre a pele de porco e uma
esfera de aço e vidro, verificando que houve uma redução dos valores dos coeficientes de
atrito com o aumento das forças exercidas [72].

5.6 Efeito do tamanho de célula no coeficiente de atrito
De forma a avaliar o efeito do tamanho da célula no coeficiente de atrito, foram
seleccionadas espumas com energias livres de superfície semelhantes e com o mesmo tipo de
célula. Esta análise restringiu-se a um mesmo grupo de espumas. O grupo de espumas
seleccionado foi os Plastazotes, com uma estrutura de célula fechada (ver figuras SEM). È de
notar que o módulo de Young depende do tamanho da célula, pelo que não é possível fixar
este parâmetro.
Desta análise, concluiu-se que quanto maior o tamanho de célula, menor o coeficiente
de atrito. Com efeito, o Plastazote branco, de tamanho de célula muito inferior aos Plastazotes
claro normal e perfurado, apresenta valores de coeficiente de atrito superiores nas quatro
forças escolhidas (ver figura 40).
Estes resultados mostraram que os valores de coeficiente de atrito são afectados pelo
tamanho da célula das espumas: quanto menor o tamanho da célula, maior o número de

47

células por unidade de área, levando assim a mais nervuras e paredes celulares na espuma.
Logo, vai haver mais pontos de contacto entre a espuma e o contracorpo, originando assim um
2

2

maior atrito. O valor da área de contacto do Plastazote branco foi 0,017 cm por cm de área
2

geométrica, enquanto os Plastazotes normal e perfurado registaram 0,012 cm e 0,013 cm

2

respectivamente. Como tal, o maior valor da área de contacto foi obtido pelo Plastazote branco,
que apresenta os maiores valores de coeficiente de atrito, o que era esperado.
Landers et al estudaram as espumas viscoelásticas de poliuretano e chegaram à
conclusão que o efeito de adesão estava fortemente relacionado com o tamanho das células.
Verificaram que as forças adesivas aumentavam com os menores tamanhos de célula e por
sua vez também com o maior número de células presentes nas espumas [73].

Tabela 16. Tabela comparativa dos parâmetros relativos aos Plastazotes

Espumas

Plastazote
branco
Plastazote
claro
perfurado
Plastazote
claro
normal

Coeficientes de
atrito
dependentes da
carga aplicada
(k)

Raio da
célula (µm)

Densidade
relativa
( / s)

Energia livre
superficial

(mJ/m2)

Módulo de Young
(MPa)

78 ± 8

0,11

27 ± 2

1,08 ± 0,17

k= 3,17

127 ± 18

0,06

21 ± 2

0,25 ± 0,03

k= 2,82

133 ± 21

0,05

26 ± 7

0,20 ± 0,03

k= 2,82

Calculou-se a densidade relativa deste grupo de espumas, grandeza que está
relacionada com o tamanho de célula, verificando-se a mesma tendência, ou seja, uma maior
densidade corresponde a um menor tamanho de célula e consequentemente a um maior
coeficiente de atrito (tabela 16).

5.7 Efeito da energia livre de superfície no coeficiente de atrito
De forma a avaliar a influência da energia livre de superfície nos valores de coeficiente
de atrito, escolheram-se para comparação duas espumas Eva, com estrutura de célula
fechada, tamanho de célula semelhante, módulos de Young relativamente próximos e energia
livre superficial muito diferente.
Concluiu-se que o Eva com maiores valores de energia livre superficial apresentava
também os maiores valores de atrito.
Estes resultados mostraram que os valores de coeficiente de atrito são afectados pela
energia livre superficial das espumas: quando a energia livre superficial é maior, as forças
adesivas aumentam, levando a um aumento do coeficiente de atrito.

48

Tabela 17. Tabela comparativa dos parâmetros relativos ao Eva e ao Eva Geriátrico

Espumas

Raio da
célula (µm)

Energia livre
superficial
2
(mJ/m )

Módulo de Young
(MPa)

Coeficientes de atrito
dependente da carga
aplicada
(k)

Eva

64 ± 14

43 ± 1

0,68 ± 0,11

k= 3,48

Eva
geriátrico

68 ± 8

11 ± 2

0,44 ± 0,08

k= 1,22

A polaridade parece condicionar os coeficientes de atrito verificados entre a pele
artificial e as espumas. Tendo em conta as diferentes espumas estudadas ao longo do
trabalho, escolheram-se espumas representativas de cada família. A partir da análise da figura
45, observou-se que existe uma tendência para que as espumas que apresentam os menores
valores de coeficiente de atrito dependente da carga aplicada (k) tenham os maiores valores de
polaridade, nomeadamente o Eva Geriátrico e os Poliuretanos.

Coeficiente de atrito dependente da carga
aplicada (k)

4
Eva

3,5

Plastazote branco

3

Sensofte menor
espessura

2,5

Multiform branco

2

Nora
Pelite claro

1,5

Poliuretano escuro

1

Eva Geriátrico

0,5
Poliuretano claro

0
0

0,1

0,2

0,3

0,4

0,5

0,6

Polaridade
Figura 45. Gráfico representativo dos coeficientes de atrito dependentes da carga
aplicada (k) em função da polaridade

49

5.8 Efeito do módulo de Young no coeficiente de atrito
O Módulo de Young é afectado pelo tipo de estrutura celular, o tamanho de célula e a
espessura das paredes. Como tal, não é possível fixar estes parâmetros independentemente.
Para avaliar o efeito do Módulo de Young no coeficiente de atrito, o comportamento das
espumas com energias livres de superfície semelhantes foram comparadas. Dois grupos de
2

2

espumas com energias livres de superfície a rondar os 21,5 mJ/m e os 27,6 mJ/m foram
constituídos (Figura 46 a) e b)).
Pode ser observado que em ambos os casos o coeficiente de atrito aumenta com a
diminuição do Módulo de Young. Este comportamento pode ser relacionado com a quantidade
de deformação das espumas no contacto elástico: baixos Módulos de Young levam a uma
maior deformação no contacto e por sua vez a uma maior área de contacto, a qual origina uma

1
0,9
0,8
0,7
0,6
0,5
0,4
0,3
0,2

1,5
Pelite
escuro

Plastazote
claro
normal

Pelite claro

Multiform
azul

1

Multiform
laranja
Plastazote
branco

Multiform
branco

Sensofte
menor
espessura

0,5
1,5

a)

Multiform
castanho

Nora

Módulo de Young (MPa)

Módulo de Young (MPa)

maior adesão e maior coeficiente de atrito.

2

2,5

3

Coeficiente de atrito dependente da carga
aplicada (k)

1

b)

2

3

4

Coeficiente de atrito dependente da carga
aplicada (k)

Figura 46. Gráfico representativo do Módulo de Young em função do coeficiente de atrito dependente
da carga aplicada (k), para grupos de espumas com energias livres de superfície médias próximas a)
2

2

21,5 mJ/m e b) 27,6 mJ/m .

50

Conclusões
Neste trabalho avaliou-se o efeito da morfologia, das propriedades mecânicas e da
energia livre superficial no comportamento tribológico de sistemas constituídos por espumas
ortopédicas/pele artificial.
Para tal, começou-se por caracterizar um número significativo de espumas utilizadas
em revestimentos de ortóteses, por forma a se poder seleccionar grupos onde apenas uma das
propriedades estudadas variasse e se poder identificar o efeito dessa propriedade no
coeficiente de atrito.
Os ensaios de molhabilidade demonstraram que espumas constituídas por células com
o mesmo tipo de estrutura mas tamanhos diferentes, não apresentam grande variação nos
valores dos ângulos de contacto. Observou-se também uma ligeira diminuição dos valores dos
ângulos de contacto das espumas de célula fechada com o aumento da densidade da espuma
(e área contacto real). Tal deve-se à maior quantidade de de material bulk, que implica uma
diminuição da fracção de ar retido no interior das células e a uma menor interacção com a gota
de água, levando assim a menores valores de ângulo de contacto
A partir dos ensaios nanotribológicos, começou-se por constatar que, tal como referem
outros autores, o aumento da força aplicada afectou os coeficientes de atrito, levando à
diminuição dos seus valores. Tal facto tem como explicação a associação da componente de
adesão à força de atrito, em cargas baixas.
Demonstrou-se que as espumas com tamanho de célula mais reduzido, e por
consequência com maior densidade de células, apresentavam os maiores valores de
coeficiente de atrito. Este facto pode atribuir-se a uma maior área de contacto entre as
espumas e a pele, resultado da maior quantidade de material sólido (bulk).
Verificou-se que o aumento dos valores de módulo de Young das espumas conduz a
uma diminuição dos valores de coeficiente de atrito. Maiores valores de Módulo de Young
originam uma menor deformação das espumas no contacto e assim uma menor área de
contacto, que leva a uma menor adesão e por sua vez menor atrito.
Finalmente, constatou-se que quanto maiores os valores da energia superficial das
espumas, maiores os valores de coeficiente de atrito obtidos. A maior energia livre superficial
origina um aumento das forças adesivas, conduzindo assim a um aumento do coeficiente de
atrito.
Os resultados obtidos comprovam que o estudo das propriedades das espumas é
essencial para que se compreenda o comportamento tribológico das ortóteses.
Para trabalho futuro, existem vários pontos por onde se pode seguir nomeadamente:


o fabrico das espumas em laboratório por forma a controlar as suas

propriedades;


a realização dos testes de atrito in vivo, em pessoas;



a análise do comportamento das espumas em meio biológico;



a construção de ortóteses para testar a sua aplicabilidade e verificar-se

o verdadeiro funcionamento do sistema espuma ortopédica/pele humana.

51

Referências Bibliográficas
[1] "Prosthetics and orthotics," International Organization for Standardization, 1989.
[Online]. Available: https://www.iso.org/obp/ui/#iso:std:iso:8549:-1:ed-1:v1:en. [Acedido
em 2015].
[2] J. E. Edelstein e J. Bruckner, Orthotics: A Comprehensive Clinical Approach, Slack
Incorporated, 2002, p. 9.
[3] "El Médico Interactivo," Sistema Nacional de Salud, 2003. [Online]. Available:
http://www.elmedicointeractivo.com/ap1/emiold/aula2003/tema2/traumas14.htm.
[Acedido em 2015].
[4] S. B. O'Sullivan, T. J. Schmitz e G. Fulk, Physical Rehabilitation, F.A.Davis Company, 2014,
pp. 1325-1354.
[5] "About orthoses and prostheses," The Australian Orthotic Prosthetic Association, 2015.
[Online]. Available: http://www.aopa.org.au/careers/what-are-orthoses-and-prostheses.
[Acedido em 2015].
[6] "Materiales para la técnica ortopédica: Otto Bock," 2008-2009. [Online]. Available:
http://doc.ottobock.es/protesica/Materiales_2008-2009.pdf. [Acedido em 2015].
[7] E. J. Kuncir, R. W. Wirta e F. L. Golbranson, "Load-bearing characteristics of polyethylene
foam: An examination of structural and compression properties," Journal of
Rehabilitation Research and Development, vol. 27, pp. 229-238, 1990.
[8] P. S. Branco, "Temas de reabilitação: Ortóteses e outras ajudas técnicas," Maio 2008.
[Online].Available:http://repositorio.chlc.minsaude.pt/bitstream/10400.17/767/1/Temas
%20Reabilita%C3%A7%C3%A3o_Ortotese%20e%20AjudasT%C3%A9cnicas.pdf. [Acedido
em 2015].
[9] S. Derler e L. C. Gerhardt, "Tribology of Skin: Review and Analysis of Experimental Results
for the Friction Coefficient of Human Skin," Tribology Letters, vol. 45, p. 1­27, 2012.
[10] W. Tang, S.-r. Ge, H. Zhu, X.-c. Cao e N. Li, "The Influence of Normal Load and Sliding
Speed on Frictional Properties of Skin," Bionic Engineering, vol. 5, p. 33-38, 2008.
[11] R. R. Wicket e M. O. Visscher, "Structure and function of the epidermal barrier," American
Journal of Infection Control, vol. 34, pp. 98-110, 2006.
[12] P. A. Kolarsick, M. A. Kolarsick e C. Goodwin, "Anatomy and Physiology of the Skin,"
Journal of the Dermatology Nurses' Association, vol. 3, pp. 203-213, 2011.

52

[13] C. Pailler-Mattei, S. Pavana, R. Vargiolu, F. Pirot, F. Falson e H. Zahouani, "Contribution of
stratum corneum in determining bio-tribological properties of the human skin," Wear,
vol. 263, p. 1038­1043, 2007.
[14] J. A. McGrath, R. A. Eady e F. M. Pope, "Anatomy and Organization of Human Skin," em
Rook's Textbook of Dermatology, Blackwell Science Ltd Oxford, 2004, pp. 3.1-3.15.
[15] F. H. Silver, J. W. Freeman e D. DeVore, "Viscoelastic properties of human skin and
processed dermis," Skin Research and Technology, vol. 7, p. 18­23, 2001.
[16] C.-Y. Chen, C.-A. Yu, T.-F. Hong, Y.-L. Chung e W.-L. Li, "Contact and frictional properties of
stratum corneum of human skin," Biosurface and Biotribology, vol. 1, p. 62­70, 2015.
[17] M. Avalle e A. Scattina, "Mechanical properties and impact behavior of a microcellular
structural foam," Latin American Jouranl of Solids and Structures, vol. 11, pp. 200-222,
2014.
[18] W. J. Nauta, "Stabilisation of low density, closed cell polyethylene foam," Eindhoven,Tese
de Doutoramento, Universidade de Twente, 2000.
[19] M. E. Rosa, "An introduction to solid foams," Philosophical Magazine Letters, vol. 88, pp.
9-10;637­645, 2008.
[20] M. Avalle, G. Belingardi e R. Montanini, "Characterization of polymeric structural foams
under compressive impact loading by means of energy-absorption diagram,"
International Journal of Impact Engineering, vol. 25, pp. 455-472, 2001.
[21] A. A. R. d. Oliveira, J. E. d. Oliveira, R. L. Oréfice, H. S. Mansur e M. d. M. Pereira,
"Avaliação das Propriedades Mecânicas de Espumas Híbridas de Vidro Bioativo/Álcool
Polivinílico para Aplicação em Engenharia de Tecidos," Revista Matéria, vol. 12, pp. 140149, 2007.
[22] M. F. Ashby, "The properties of foams and lattices," Philosophical Transactions of the
royal society A, vol. 364, p. 15­30, 2006.
[23] A. H. Landrock, Handbook of Plastic Foams: Types, Properties, Manufacture and
Applications, New Jersey: Elsevier Science, 1995, pp. 221-248.
Technologies-Polyethylene
foam,"
2015.
[Online].
Available:
[24] "UFP
http://www.ufpt.com/materials/foam/polyethylene-foam.html. [Acedido em 2015].
[25] C. W. DiGiovanni e J. Greisberg, Foot and Ankle: Core Knowledge in Orthopaedics, New
York: Elsevier, 2007, pp. 27-28.
[26] P. A. Romero, "Three-dimensional Finite-deformation Multiscale Modeling of ElastoViscoplastic Open-Cell foams in the Dynamic Regime," Tese de Doutoramento,

53

Universidade de New Jersey, 2008.
[27] B. D. Fahlman, Materials Chemistry, 2 ed., Springer, 2011, p. 82.
[28] E. V. D. Heide, X. Zeng e M. A. Masen, "Skin tribology: Science friction?," Friction, vol. 1, p.
130­142, 2013.
[29] S. Derler, L. C. Gerhardt, A. Lenz, E. Bertaux e M. Hadad, "Friction of human skin against
smooth and rough glass as a function of the contact pressure," Tribology International,
vol. 42, p. 1565­1574, 2009.
[30] N. Nawaz, O. Troynikovb e C. Watson, "Evaluation of Surface Characteristics of Fabrics
Suitable for Skin Layer of Firefighters' Protective Clothing," Physics Procedia, vol. 22, p.
478 ­ 486, 2011.
[31] N. K. Veijgen, M. A. Masen e E. v. d. Heide, "Variables influencing the frictional behaviour
of in vivo human skin," Journal of the Mechanical behavior of biomedical materials, vol.
28, p. 448­461, 2013.
[32] S. Derler e G. M. Rotaru, "Stick­slip phenomena in the friction of human skin," Wear, vol.
301, p. 324­329, 2013.
[33] D. W. Koenig, B. Dvoracek e R. Vongsa, "In vitro prediction of in vivo skin damage
associated with the wiping of dry tissue against skin," Skin Research and Technology, vol.
19, pp. 453-458, 2012.
[34] "IMS In Vitro SPF/UVA Protocol for use with VITRO-SKIN® Substrate," [Online]. Available:
http://www.ims-usa.com/protocol. [Acedido em 2015].
[35] C. R. Blanchard, "Atomic Force Microscopy," em The Chemical educator, 5 ed., vol. 1,
Santo Antonio,Texas, Springer, 1996, pp. 1-8.
[36] C. B. Prater, P. G. Maivald, K. J. Kjoller e M. G. Heaton, "Tapping Mode Imaging
Applications and Technology," 2004. [Online]. Available: https://www.tuchemnitz.de/physik/OSMP/Soft/ws0506_ue03b.pdf. [Acedido em 2015].
[37] W. Zhou, Z. L. Wang, D. Joy e R. P. Apkarian, "Fundamentals of Scanning Electron
Microscopy," em Scanning Microscopy for Nanotechnology: Techniques and Applications,
Springer, 2006, pp. 1-8.
[38] A. J. d. S. C. Monteiro, "Revestimentos multicamada PVD com comportamento
electrocrómico," Tese de Mestrado, Universidade do Minho, 2005.
[39] J. P. Farinha, "Surfaces, Interfaces and Colloids: Microscopy Techniques," [Online].
Available:http://web.ist.utl.pt/farinha/SIC/pdf_files/SIC_1516_microscopy%20techniques
_Sem5&6.pdf. [Acedido em 2015].

54

[40] S. Blacher, V. Maquet, R. Pirard, J. P. Pirard e R. Jérôme, "Image analysis, impedance
spectroscopy and mercury porosimetry for characterization of freeze-drying porous
materials," Colloids and Surfaces A: physicochemical and Engineering aspects, vol. 187 e
188, pp. 1-580, 2001.
[41] K. Unger, J. Rouquerol, F. Rodriguez-Reinoso e B. McEnaney, Characterization of Porous
Solids VI, vol. 144, Elsevier, 2002, pp. 331-333.
[42] F. Mohammad, Specialty Polymers: Materials and Applications, I.K International
Publishing House Pvt. Ltd, 2007, pp. 105-107.
[43] W. Norde, Colloids and Interfaces in Life Sciences, Marcel Dekker.Inc, 2003.
[44] F. A. Buzeto e J. S. C. Campos, "Modificação do ângulo de contacto de amostras de
borracha natural submetida a tratamento por descarga corona," em Congresso
CONAMET/SAM 2004 , 2004.
[45] A. P. Carapeto, A. P. Serro, R. Colaço, B. Saramago, B. M. F. Nunes, M. C. L. Martins, S.
Todorovic, M. T. Duarte e V. André, "Characterization of two DLC coatings for joint
prosthesis: The role of albumin on the tribological behavior," Surface & Coatings
Technology, vol. 204, p. 3451­3458, 2010.
[46] L. M. V. Ferreira, "Revestimentos Hidrofóbicos," Tese de Mestrado, Faculdade de Ciências
e Tecnologia, 2013.
[47] C. F. Pina, N. Patas, J. Canhoto, R. Cláudio, S. M. Olhero, A. P. Serro, A. C. Ferro e M.
Guedes, "Tribological behaviour of unveneered and veneered lithium disilicate dental
material," Mechanical behavior of biomedical lmaterials, vol. 53, pp. 226-238, 2015.
[48] S. D. Dvorak, D. D. Woodland e W. N. Unertl, "Nanotribometer: a new instrument for
nano-scale to micron-scale friction and wear measurements," Tribology Letters, vol. 4, pp.
199-204, 1998.
[49] "CSM Tribometers: Nano & Micro range for Tribological studies," [Online]. Available:
http://www.csm-instruments.com/en/webfm_send/5. [Acedido em 2015].
[50] "All about plastic molding," D & M Plastics.Inc, [Online]. Available:
http://www.plasticmoulding.ca/polymers/polyethylene.htm. [Acedido em 2015].
[51] "Density of Plastics," DOTMAR Engineering Plastic products, [Online]. Available:
http://www.dotmar.com.au/density.html. [Acedido em 2015].
[52] S. T. Lee e N. S. Ramesh, Polymeric Foams: Mechanisms and Materials, CRC Press, 2004,
p. 103.

55

[53] D. Ward e R. Longman, "Separator". Patente WO 2013110951 A1, Agosto 2013.
[54] M. J. Adams, B. J. Briscoe e S. A. Johnson, "Friction and lubrication of human skin,"
Tribology Letters, vol. 26, pp. 239-253, 2007.
[55] W. Tang e B. Bhushan, "Adhesion, friction and wear characterization of skin and skin
cream using atomic force microscope," Colloids and Surfaces B: Biointerfaces, vol. 76, p.
1­15, 2010.
[56] B. Bhushan, S. Chen e S. Ge, "Friction and durability of virgin and damaged skin with and
without skin cream treatment using atomic force microscopy," Beilstein Journal of
Nanotechnology, vol. 3, p. 731­746, 2012.
[57] N. Starostina, M. Brodsky, S. Prikhodko, C. M. Hoo, M. L. Mecartney e P. West, "AFM
capabilities in characterization of particles and surfaces: From angstroms to microns,"
Journal Cosmetic Science, vol. 59, pp. 225-232, 2008.
[58] A. Elkhyat, C. Courderot-Masuyer, T. Gharbi e P. Humbert, "Influence of the hydrophobic
and hydrophilic characteristics of sliding and slider surfaces on friction coefficient: in vivo
human skin friction comparison," Skin Research and Technology, vol. 10, p. 215­221,
2004.
[59] A. Elkhyat, P. Agache, H. Zahouan e P. Humbert, "A new method to measure in vivo
human skin," International Journal of Cosmetic Science, vol. 23, pp. 347-352, 2001.
[60] A. Mavon , H. Zahouani, D. Redoules, P. Agache, Y. Gall e P. Humbert , "Sebum and
stratum corneum lipids increase human skin surface free energy as determined from
contact angle measurements: A study on two anatomical sites," Colloids and Surfaces B:
Biointerfaces, vol. 8, pp. 147-155 , 1997.
[61] P. Agache e P. Humbert, Measuring the Skin: Non-invasive Investigations, Physiology,
Normal Constants, Berlim: Springer, 2004, pp. 17-30.
Properties
Database,"
[Online].
Available:
[62] "Material
http://www.makeitfrom.com/material-properties/Low-Density-Polyethylene-LDPE/.
[Acedido em 2015].
[63] E. Linul, L. Marsavina, T. Voiconi e T. Sadowski, "Study of factors influencing the
mechanical properties of polyurethane foams under dynamic compression," Journal of
Physics :Conference Series, vol. 451, 2013.
[64] D. P. Subedi, "Contact Angle Measurement for The Surface Characterization of Solids,"
The Himalayan Physics, vol. 2, pp. 1-4, 2011.

56

[65] D. Pappas, C. Copeland e R. Jensen, "Wettability Tests of Polymer Films and Fabrics and
Determination of Their Surface Energy by Contact-Angle Methods," Março 2007. [Online].
Available:http://www.researchgate.net/publication/235080831_Wettability_Tests_of_Po
lymer_Films_and_Fabrics_and_Determination_of_Their_Surface_Energy_by_ContactAngle_Methods. [Acedido em 2015].
[66] C. M. Mate, Tribology on the Small Scale: A bottom up approach to friction, lubrication,
and wear, Oxford University Press, 2008, pp. 63-78.
Fundamentals,"
Clean
Seal
Inc,
[Online].
[67] "Adhesion
http://www.cleanseal.com/adhesion-fundamentals.html. [Acedido em 2015].

Available:

[68] K. C. Ludema, Friction, Wear, Lubrication: A Textbook in Tribology, CRC Press, 1996, pp.
35-81.
[69] B. Zappone , K. J. Rosenberg e J. Israelachvili, "Role of nanometer roughness on the
adhesion and friction of a rough polymer surface and a molecularly smooth mica surface,"
Tribology Letters, vol. 26, pp. 191-201, 2007.
[70] S. Derler, U. Schrade e L. C. Gerhardt, "Tribology of human skin and mechanical skin
equivalents in contact with textiles," Wear, vol. 263, p. 1112­1116, 2007.
[71] A. F. El-Shimi, "In vivo skin friction measurements," J. Soc. Cosmet, Chem, vol. 28, pp. 3751, 1977.
[72] H. Xiao, N. Ariyasinghe, X. He e H. Liang, "Tribological evaluationof porcine skin," Colloids
and Surfaces B: Biointerfaces, vol. 116, p. 734­738, 2014.
[73] R. Landers, R. Hubel e R. Borgogelli, "The Importance of Cell Structure for Viscoelastic
Foams," em Polyurethanes Technical Conference, Orlando, Florida, 2007.
[74] S. Sabreen, "Adhesion bonding," 19 Março 2012. [Online]. Available:
http://www.adhesionbonding.com/2012/03/19/plastics-surface-energy-wetting-testmethods/. [Acedido em 2015].
Freudenrich,
"HowStuffWorks
Science,"
[Online].
Available:
[75] C.
http://science.howstuffworks.com/life/cellular-microscopic/fat-cell.htm. [Acedido em
2015].
[76] "ISAAC : Imaging Spectroscopy and Analysis Centre," University of Glasgow, [Online].
Available:http://www.gla.ac.uk/schools/ges/research/researchfacilities/isaac/services/sc
anningelectronmicroscopy/. [Acedido em 2015].

57

[77] "IMS.inc Empowering Product Development," [Online]. Available: http://www.imsusa.com/vitro-skin. [Acedido em 2015].
[78] A. P. M. Carapeto, "Estudo de dois novos DLC's para revestimento de próteses articulares:
Efeito da albumina no seu comportamento tribológico," Tese de Mestrado, Instituto
Superior Técnico, 2009.
[79] D. Myers, "Atomic Force Microscope: A Tiny Record Player," University of California,
Undergraduate
research,
11
Março
2014.
[Online].
Available:
https://undergrad.research.ucsb.edu/2014/03/atomic-force-microscope-tiny-recordplayer/. [Acedido em 2015].
[80] M. R. Pacheco, W. C. Jansen e D. D. Oliveira, "The role of friction in orthodontics," Dental
Press Journal of Orthodontic, vol. 17, pp. 170-177, 2012.
[81] M. J. Highsmith, W. S. Quillen e R. Dubey, "Orthotic Overview," 2009. [Online]. Available:
http://oandp.health.usf.edu/Orth/orthotics_ov/Orthotic%20Overview.pdf. [Acedido em
2015].

58